• 2022-07-28
    计算 \(\oint_L {xydx} \),其中\(L\) 为圆周 \({(x - a)^2} + {y^2} = {a^2}(a > 0)\)及 \(x\)轴所围成的在第一象限内的区域整个边界(按逆时针方向).
    A: \({\pi \over 2}{a^3}\)
    B: \( - {\pi \over 3}{a^3}\)
    C: \( {\pi \over 3}{a^3}\)
    D: \( - {\pi \over 2}{a^3}\)
  • D

    内容

    • 0

      计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)

    • 1

      函数\( y = 3\sin \left( {\pi x + {\pi \over 6}} \right) \) 的周期为( ). A: 2 B: \( \pi \) C: 1 D: \( 2\pi \)

    • 2

      曲线\(y = \sin x\) 在点\(({\pi \over 2},1)\)处的曲率为 ( ) A: \({1 \over 2}\) B: \(1\) C: \(2\) D: \(3\)

    • 3

      曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$

    • 4

      下列函数中,( )不是方程\( xy' + y - x^2 = 0 \)的解。 A: \( y = { { {x^2}} \over 3} + {1 \over x} \) B: \( y = { { {x^2}} \over 3} \) C: \( y = { { {x^2}} \over 3} + 2 \) D: \( y = { { {x^2}} \over 3} - {1 \over x} \)