计算 \(\oint_L {xydx} \),其中\(L\) 为圆周 \({(x - a)^2} + {y^2} = {a^2}(a > 0)\)及 \(x\)轴所围成的在第一象限内的区域整个边界(按逆时针方向).
A: \({\pi \over 2}{a^3}\)
B: \( - {\pi \over 3}{a^3}\)
C: \( {\pi \over 3}{a^3}\)
D: \( - {\pi \over 2}{a^3}\)
A: \({\pi \over 2}{a^3}\)
B: \( - {\pi \over 3}{a^3}\)
C: \( {\pi \over 3}{a^3}\)
D: \( - {\pi \over 2}{a^3}\)
举一反三
- \( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。 A: \( \pi \) B: \( {\pi \over 2} \) C: \( {\pi \over 3} \) D: \( {\pi \over 6} \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)为( )。 A: \( \pi \) B: \( {\pi \over 3} \) C: \( {\pi \over 2} \) D: \( {\pi \over 5} \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( y \)轴旋转所得旋转体体积\( V \)=( )。 A: \( {\pi \over 2} \) B: \( {\pi \over 3} \) C: \( {\pi \over 5} \) D: \( \pi \)
- 球面 \(x^2 + {y^2} + {z^2} = {a^2}\)含在圆柱面\({x^2} + {y^2} = ax\) 内部的那部分面积为 ( ) A: \(4{a^2}({\pi \over 2} - 1)\) B: \(4{a^2}({\pi \over 3} - 1)\) C: \(4{a^2}({\pi \over 2} + 1)\) D: \(4{a^2}({\pi \over 3} + 1)\)
- 以\( xOy \) 面上的圆周\( {x^2} + {y^2} = ax \) 所围区域为底,曲面\( z = {x^2} + {y^2} \) 为顶的曲顶柱体的体积为( ) A: \( {3 \over {32}}\pi {a^4} \) B: \( {5 \over {32}}\pi {a^4} \) C: \( {7 \over {32}}\pi {a^4} \) D: \( {9 \over {32}}\pi {a^4} \)