设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上连续,且[tex=3.714x1.286]vq1WWXxkiwp+KgHbVzU/RQ==[/tex],[tex=3.5x1.286]tgMYivZCVo1kKaUfpBL7gg==[/tex],证明:方程[tex=3.786x1.286]a7syGVnHJ8vV4xZ+ta96jg==[/tex]在[tex=2.071x1.286]ObtC4nfyqFyi8RRxjLkdQA==[/tex]内至少有一实根。
举一反三
- 若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上有定义,在[tex=2.071x1.286]ObtC4nfyqFyi8RRxjLkdQA==[/tex]内连续,且[tex=5.429x1.286]X7mu1bQAI43TOgCZSV94BZX8fXDFGukLQCTlsfQQ+aY=[/tex],能否保证方程[tex=3.714x1.286]0ZoDYEiHpPjb6Gw3Oeomrg==[/tex]在[tex=2.071x1.286]ObtC4nfyqFyi8RRxjLkdQA==[/tex]内必有实根?
- 函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上有界是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上(常义)可积的[input=type:blank,size:4][/input]条件,而[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上连续是[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上可积的[input=type:blank,size:4][/input]条件;
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上可导,且[tex=7.214x1.286]/mACCuNKnGtl0E0FaWSkbvU2Fq0S2DqZ17ibYvubDLaO5FvmfT5HZIfFbCA8+slr[/tex],证明:存在[tex=3.714x1.286]asbZPW3YN+S5LA2oFcnF4Q==[/tex],使[tex=3.929x1.286]0o6buAQ5WD2oecMXnej5rMAV8GQlWyol+ExCq32xFVs=[/tex] .
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在闭区间[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上连续,在开区间[tex=2.071x1.286]ObtC4nfyqFyi8RRxjLkdQA==[/tex]内可导,且[tex=3.929x1.286]rry4HS9j03SSzVB9RUT23Q==[/tex],若极限[tex=6.571x2.071]/N7iQJH5tJ1CHV4Wb82/t5l1SAe/HM45edYGn0PE4xrh0AdQiW8wb2OwnWB4aOnN[/tex]存在,证明:(I)在[tex=2.071x1.286]ObtC4nfyqFyi8RRxjLkdQA==[/tex]内[tex=3.714x1.286]FOh2uNZfgGlH8S+OVIqrUA==[/tex];(II)在[tex=2.071x1.286]ObtC4nfyqFyi8RRxjLkdQA==[/tex]内存在点 [tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使[tex=7.643x2.714]fcrG91uS2Lgsl5jlblCwp4sMxk/MN/6kuDXBJl4caC8ytdJsZobTJ8c0T5gsNKc3EJfimDaPvtxGWRFRLvHt3w==[/tex];(III)在[tex=2.071x1.286]ObtC4nfyqFyi8RRxjLkdQA==[/tex]内存在与(II)中 [tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex] 相异的点[tex=0.571x1.286]IvGNOcnlsPar7nw7Fd55Kg==[/tex],使[tex=14.214x2.5]3nYslbo2LIrp8HSf5Pgt38MgVldrREnqVEVagfdSawttEikm+75KWA1ISMYL3EGRS5n2H2XtMBUp+nj+ic9Fzw==[/tex]。(本题满分10分)
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上可导 , [tex=6.714x1.286]e2rQdJIDX6m4QJxK4bB8yA2e0ZugzW2OtDjTuouKEaU=[/tex], [tex=6.643x1.286]ow6boHTnn+TpVUKLhA+xDFr8nZxDZzzULHZWkzd1NMtYQpVUMH4PJxG7Y5bu7eV4[/tex]。 试证 [tex=3.929x1.286]nOJBJucVwlQuHq02hM9TshFm+YZTv5ximTg1KFYKyjI=[/tex]在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内至少有两个不同的实根。