• 2022-06-27
    铋 (熔点为[tex=3.429x1.071]fR7ZT/HFRdEJ5VIipllWqax6QwVWKuUGdVK56thYs9E=[/tex]) 和锑 (熔点为[tex=3.429x1.071]QSJmuH4hHzWn8DjUhqMRCBNDZ+tCMJ2yaw1cb1Ht4kI=[/tex]) 在液态和固态时均能彼此无限互溶, [tex=4.357x1.357]tgb5waVAhAVAvfjiTGQjAC4SW5WxOoJQmDLnOkmam9Y=[/tex]的合金在[tex=2.643x1.071]Gjk/Jahgicf2XsG6pRdY0A==[/tex]时开始凝固出成分为[tex=4.286x1.286]on3q/tAdWDD0vz6+gU9VV8iadCJoMDCJeg+Mu21vVUU=[/tex]的固相。[tex=4.357x1.286]TyYTsFfEDvontAAeRUUiwJFIFxRJzlJJyrEnXtXJ73w=[/tex]的合金在[tex=2.643x1.071]Gjk/Jahgicf2XsG6pRdY0A==[/tex]时开始凝固出成分为[tex=4.286x1.286]PxkEJ2Df6gHzWBkdRH14JlJJYW5QoHZBsc7IVMiEtKw=[/tex]的固相。根据上述条件, 要求:1) 绘出[tex=2.929x1.143]/nkuX5OwA8lbAZUQOQ7v9Q==[/tex]相图, 并标出各线和各相区的美称。2) 从相图上确定[tex=4.286x1.286]9027jReEOdl61/HB22K84g==[/tex]合金的开始结晶温度和结晶终了温度, 并求出它在[tex=2.643x1.071]dImVAfke3pLhAjPHkvwp9A==[/tex]时的平衡相成分及其含量。
  • 1)相图和相区[img=380x339]17d17325f7eeef2.png[/img]2)[tex=1.571x1.429]i0mZSMHluiEw8a/EXAEhJw==[/tex]与[tex=1.643x1.429]dyeRgE7IjwkPx8qXUQLGZQ==[/tex]在相图中已标出,[tex=4.286x1.286]eH08uj62xpXxIURGkoMMeQ==[/tex]合金在[tex=2.643x1.071]dImVAfke3pLhAjPHkvwp9A==[/tex]时的平衡相成分及其含量可 根据相图和杜杆定律计算得出:根据相图可以看出: 在[tex=2.643x1.071]dImVAfke3pLhAjPHkvwp9A==[/tex]相平衡时, [tex=1.071x1.214]oGGz1njr2L1hj4kK/kSewA==[/tex]相为[tex=4.357x1.286]/cbvoVwTDHBo/q37/+K46Z6LkFJBADMfRpCCW+ZmvO8=[/tex]的液相[tex=2.929x1.143]/nkuX5OwA8lbAZUQOQ7v9Q==[/tex]合金, [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]相为[tex=4.357x1.286]2gM+tDsO4fjd7rPs4cwlqw==[/tex]的固相相[tex=2.929x1.143]o8vxrQ9NMitOGJx0zi0WvQ==[/tex]合金。根据杜杆定律: [tex=1.071x1.214]oGGz1njr2L1hj4kK/kSewA==[/tex]相的含量[tex=18.0x1.357]0UppzdKNlj9avJV6M5fnxveac2W3yv8KoM//DYzFvnEs7wcY+s/D5ubY5mxLeKksg+ioRdsHmCOAcJvV5+WVOw==[/tex][tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]相的含量[tex=9.071x1.214]/yK27NaJW7WX4DvvPXHBnJABjzmBQL5Obl1ccwTmggU=[/tex]

    举一反三

    内容

    • 0

      计算 [tex=4.429x1.214]MmTtPvckUtGkBprHbZqYQmOPXsbdEbe530/YzIFcDj/6+cPQpLVkrezEuZdHmVqA[/tex]合金在 [tex=2.643x1.071]M6TeCAYCoRNQYR2LiYuCMxAyQRPOKCMh8pBX3q2sf9g=[/tex] 下各个相及其组分数量和成分。

    • 1

      判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]

    • 2

      若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?

    • 3

      求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?

    • 4

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?