\(设曲面f(x,y,z)=0,函数f(x,y,z)有连续的偏导数吗,且在P(x_0,y_0,z_0)处有定义,则曲面在P处有法向量。\)
正确
举一反三
- \(设曲面f(x,y,z)=0,且在P(x_0,y_0,z_0)处有定义,则曲面在P处有法向量。\)
- 下列结论正确的是()。 A: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数存在,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续 B: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数存在 C: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处的某个邻域内两个偏导数存在且有界,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续 D: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数有界
- 曲面F(x,y,z)=0和曲面G(x,y,z)=0的交线方程可写为: F(x,y,z)=0,G(x,y,z)=0.
- 若z=f(x,y)在点p(x,y)处具有一阶连续偏导数,则z=f(x,y)在点p(x,y)处的方向导数存在。
- feff设二元函数z=f(x,y),则二元函数z=f(x,y)在(x,y)处的偏导数连续是z=f(x,y)在(x,y)处可微的
内容
- 0
若z=f(x,y)在点p(x,y)处的方向导数存在,则z=f(x,y)在点p(x,y)处的偏导数存在。
- 1
【填空题】设函数 f(x,y) 在其驻点 (x 0 ,y 0 ) 的某个邻域内有连续的二阶偏导数,而 P(x,y)= , 若 P(x 0 ,y 0 )<0 且 <0, 则 f(x 0 ,y 0 ) 是函数 f(x,y) 的 值
- 2
设z=z(x,y), y=y(x,z), x=x(y,z)都是由方程 F (x,y,z)=0确定的具有一阶连续偏导数的二元函数,则[img=102x47]18036fdb6dacf56.png[/img]
- 3
\(若函数z=f(x,y)的两个混合偏导数在点(x_0,y_0)处连续,则z二阶混合偏导数与求导顺序无关.\)
- 4
设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导数的函数,则=(). A: 0 B: -1 C: 2 D: 1