\(设曲面f(x,y,z)=0,函数f(x,y,z)有连续的偏导数吗,且在P(x_0,y_0,z_0)处有定义,则曲面在P处有法向量。\)
举一反三
- \(设曲面f(x,y,z)=0,且在P(x_0,y_0,z_0)处有定义,则曲面在P处有法向量。\)
- 下列结论正确的是()。 A: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数存在,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续 B: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数存在 C: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处的某个邻域内两个偏导数存在且有界,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续 D: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数有界
- 曲面F(x,y,z)=0和曲面G(x,y,z)=0的交线方程可写为: F(x,y,z)=0,G(x,y,z)=0.
- 若z=f(x,y)在点p(x,y)处具有一阶连续偏导数,则z=f(x,y)在点p(x,y)处的方向导数存在。
- feff设二元函数z=f(x,y),则二元函数z=f(x,y)在(x,y)处的偏导数连续是z=f(x,y)在(x,y)处可微的