\(设曲面f(x,y,z)=0,且在P(x_0,y_0,z_0)处有定义,则曲面在P处有法向量。\)
举一反三
- \(设曲面f(x,y,z)=0,函数f(x,y,z)有连续的偏导数吗,且在P(x_0,y_0,z_0)处有定义,则曲面在P处有法向量。\)
- 曲面F(x,y,z)=0和曲面G(x,y,z)=0的交线方程可写为: F(x,y,z)=0,G(x,y,z)=0.
- 下列结论正确的是()。 A: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数存在,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续 B: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数存在 C: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处的某个邻域内两个偏导数存在且有界,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续 D: z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处连续,则z=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)处两个偏导数有界
- 设函数 f(x,y) 在点 (0,0) 的某领域内有定义,且,则有\( {f_x}(0,0) = 3,{f_y}(0,0) = - 1 \) ( )。 A: \( dz\left| {_{(0,0)} = 3dx - dy} \right. \) B: 曲面\( z = f(x,y) \)在点\( (0,0,f(0,0)) \)处的一个法向量为\( (3, - 1,1) \) C: 由z = f(x,y)和y = 0 构成的曲线在点\( (0,0,f(0,0)) \)处的一个切向量为\( (1, 0,3) \) D: 由 z = f(x,y)和y = 0 构成的曲线在点\( (0,0,f(0,0)) \)处的一个切向量为\( (3,0,1) \)
- 设z=f(x,y)二阶连续可微,fx(x0,y0)=0,fy(x0,y0)=0,分别令A=fxx(x0,y0),B=fxy(x0,y0),C=fyy(x0,y0),则 A: A>0且AC>B2时,z=f(x,y)在(x0,y0)处取得极小值 B: A<0且AC>B2时,z=f(x,y)在(x0,y0)处取得极大值 C: A>0且AC D: A<0且AC E: AC0或A<0或A=0,均有z=f(x,y)在(x0,y0)处不取得极值.