设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵.当[tex=2.286x0.929]MvAzo/W52101fXj5D4S9tw==[/tex]时证(1) [tex=5.286x1.357]v3ftjfg5853+CriE4S8dXA==[/tex];(2) [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]不可逆;(3) 齐次线性方程组[tex=4.714x1.357]MHhWKj9Fmo6BowhdwpS8Aw==[/tex]有非零解.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵,其中[tex=3.143x0.929]l6Jw54gxNWln0dfsw44Jtw==[/tex] 如果[tex=2.786x1.0]YX5lolnI6Ykt6Dnvpiqecw==[/tex], 证明: 矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的列向量组线性无关.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵. 若 [tex=3.214x1.214]Zd4LbMRJAkCJfdBwm7Q3pg==[/tex], 求证: [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个列向量线性无关.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex] 为 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 矩阵,则线性方程组[tex=4.857x1.357]7fk4PDAIPUAv1IgmkEs0SQ/UZtPjPog3vrg2N+fTizIg1gR89kntpI3xyzR34/g6[/tex] 未知类型:{'options': ['当 [tex=2.857x0.929]o5EIf95IK2rd5cuovwFuKA==[/tex] 时仅有零解\xa0', '当\xa0[tex=2.857x0.929]o5EIf95IK2rd5cuovwFuKA==[/tex]\xa0时必有非零解\xa0', '当\xa0[tex=2.857x0.929]MvAzo/W52101fXj5D4S9tw==[/tex]时仅有零解\xa0', '当\xa0[tex=2.857x0.929]MvAzo/W52101fXj5D4S9tw==[/tex]\xa0时必有非零解'], 'type': 102}
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 阶复矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 阶复矩阵, 又 [tex=3.929x1.357]2khaYs0xrkcqnr1Fn6Uphl4GgrtWQrBlfDOh36tYhlk=[/tex], 求证: [tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex] 可对角化的充要条件是 [tex=1.571x1.0]tkL6v6/VBWg422Q3lZWOGA==[/tex] 可对角化.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵, 已知 [tex=5.5x1.357]AhNdH2MMZrSh49k5SUPih3WmvYY4iHWErcMsIMMT5L8=[/tex]证明:当[tex=2.214x1.071]64bbjuyExeVSV8gL25b8fg==[/tex] 时, 矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为正定矩阵.