举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵. 若 [tex=3.214x1.214]Zd4LbMRJAkCJfdBwm7Q3pg==[/tex], 求证: [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个列向量线性无关.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵, 已知 [tex=5.5x1.357]AhNdH2MMZrSh49k5SUPih3WmvYY4iHWErcMsIMMT5L8=[/tex]证明:当[tex=2.214x1.071]64bbjuyExeVSV8gL25b8fg==[/tex] 时, 矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为正定矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=2.357x1.071]LAA2A9ICrxswrZM5LeuzCg==[/tex] 矩阵。证明 [tex=3.071x1.0]9p6jQHnicI+OkelBMty3Kw==[/tex] 的充分必要条件是 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的每个列向量均为齐次线性方程组 [tex=3.429x1.0]0Zdjf2C3vziD/rIFOhD/NA==[/tex] 的解。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 阶复矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 阶复矩阵, 又 [tex=3.929x1.357]2khaYs0xrkcqnr1Fn6Uphl4GgrtWQrBlfDOh36tYhlk=[/tex], 求证: [tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex] 可对角化的充要条件是 [tex=1.571x1.0]tkL6v6/VBWg422Q3lZWOGA==[/tex] 可对角化.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵.当[tex=2.286x0.929]MvAzo/W52101fXj5D4S9tw==[/tex]时证(1) [tex=5.286x1.357]v3ftjfg5853+CriE4S8dXA==[/tex];(2) [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]不可逆;(3) 齐次线性方程组[tex=4.714x1.357]MHhWKj9Fmo6BowhdwpS8Aw==[/tex]有非零解.
内容
- 0
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=2.357x1.143]mRv/n5Z9chZTIRHiNEmvvw==[/tex] 矩阵, 证明方程组 [tex=3.357x1.0]QFCxlGh75glk4rKEmUWpdQ==[/tex] 和方 程组 [tex=2.643x1.0]LTFtuTG1XGNG6ZKGcYObog==[/tex] 同解的充要条件是 [tex=5.571x1.357]VhAWtHdvohiNT56QOg1UL7GMDRCYakZE6Tv5pd7/RS8=[/tex].
- 1
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是实正定矩阵,证明:[tex=1.571x1.0]ZT2ndRlmVScNtr8tRaWqog==[/tex]是正定矩阵的充要条件是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]可换。
- 2
设矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,证明: [tex=2.0x1.214]bB6MSaCzjTYi/viQyxJE0g==[/tex]和[tex=2.0x1.214]+ViHPiY1x3grdTX5xtwu9Q==[/tex]都是对称矩阵.
- 3
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, 则 [tex=3.071x1.0]gOXtqsUVQJgsp+QmYJZYJA==[/tex], 其中 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=2.571x1.071]cx+2xSos1xod7QXaYyONqA==[/tex] 矩阵且 [tex=4.429x1.357]add5zLXx5HYsqtXYRazw7g==[/tex] 是 [tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex] 矩阵且 [tex=3.5x1.357]y2PK6Mky7YxahgfnqXrZ5A==[/tex]
- 4
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,证明,若[tex=3.286x1.0]B5kng4RQ4+wxoF4j9jMkfg==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]互为逆矩阵。