• 2022-06-30
    题目08. 在\(\mathbb{R}^2\)中,先平移\([1,1]^T\),再旋转\(\frac{\pi}{3}\),在伸长2倍的映射是:
    A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x+\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x-y+1+\sqrt{3}\end{pmatrix}\)
    B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x-\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x+y+1+\sqrt{3}\end{pmatrix}\)
    C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}\sqrt{3}x+y+1-\sqrt{3}\\ x-\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\)
    D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} \sqrt{3}x-y+1-\sqrt{3}\\ x+\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\)
  • 举一反三