题目09. 在\(\mathbb{R}^2\)中先关于\(y=x\)反射,再平移\([1,1]^T\),再关于\(y=-x\)反射的映射是:
A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x+1\\ y+1\end{pmatrix}\)
B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x-1\\ y-1\end{pmatrix}\)
C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x+1\\ -y+1\end{pmatrix}\)
D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x-1\\ -y-1\end{pmatrix}\)
A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x+1\\ y+1\end{pmatrix}\)
B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x-1\\ y-1\end{pmatrix}\)
C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x+1\\ -y+1\end{pmatrix}\)
D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x-1\\ -y-1\end{pmatrix}\)
举一反三
- 题目08. 在\(\mathbb{R}^2\)中,先平移\([1,1]^T\),再旋转\(\frac{\pi}{3}\),在伸长2倍的映射是: A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x+\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x-y+1+\sqrt{3}\end{pmatrix}\) B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x-\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x+y+1+\sqrt{3}\end{pmatrix}\) C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}\sqrt{3}x+y+1-\sqrt{3}\\ x-\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\) D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} \sqrt{3}x-y+1-\sqrt{3}\\ x+\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\)
- 下列矩阵中是单位矩阵的为( ). A: $\begin{pmatrix}1&1\\1&1\end{pmatrix}$ B: $\begin{pmatrix}1&0\\0&1\end{pmatrix}$ C: $\begin{pmatrix}1&0\\0&0\end{pmatrix}$ D: $\begin{pmatrix}0&1\\1&0\end{pmatrix}$
- 以下 ____ 不在\(C(A^T)\)中 A: \(\begin{pmatrix}1&2&-6&3\end{pmatrix}^T\) B: \(\begin{pmatrix}1&-2&3&-2\end{pmatrix}^T\) C: \(\begin{pmatrix}1&1&2&-1\end{pmatrix}^T\) D: \(\begin{pmatrix}1&-1&-1&1\end{pmatrix}^T\)
- 令\(F_n = \{次数小于n的多项式全体\}\).\(T:F_3 \to F_3\)定义为\(T(f) = f'\)是微分映射.在基\(\{1,x,x^2\}\)下,\(T\)对应的矩阵为____. A: \(\begin{pmatrix}0&0&0\\1&0&0\\0&2&0\end{pmatrix}\) B: \(\begin{pmatrix}0&0&0\\1&0&0\\0&1&0\end{pmatrix}\) C: \(\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}\) D: \(\begin{pmatrix}0&1&0\\0&0&2\\0&0&0\end{pmatrix}\)
- 假设\(x_k\)表示第\(k\)年某校学生喜欢微积分胜于线性代数的百分比,则 \(y_k = 1- x_k\)表示更喜欢线性代数的百分比.在\(k + 1\)年, 原来更喜欢微积分的同学的\(1/5\)想法转变,而原来更喜欢线性代数的同学的\(3/10\)改变了想法.于是有\(\begin{pmatrix}x_{k+1}\\y_{k+1}\end{pmatrix}=A\begin{pmatrix}x_k\\y_k\end{pmatrix}\). 则极限 \(\lim_{k\rightarrow \infty} A^k\begin{pmatrix}0.5\\0.5\end{pmatrix}=\_\_.\) A: \(\begin{pmatrix}0.6\\0.4\end{pmatrix}\) B: \(\begin{pmatrix}0.5\\0.5\end{pmatrix}\) C: \(\begin{pmatrix}0.4\\0.6\end{pmatrix}\) D: \(\begin{pmatrix}0.7\\0.3\end{pmatrix}\)