举一反三
- 求群[tex=2.5x1.357]GYo3gSPCf+Qe6EcQHIRdWw==[/tex] 的所有子群。
- 试证:群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的指数为2的子群[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]一定是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群.
- 试证:对称群[tex=1.071x1.214]dQfeaDURMKi/xXfHSMIPWg==[/tex]是交错群[tex=1.571x1.214]qU3OdQV3wynwQQ1NQw6b1Q==[/tex]的子群.
- 画出 3 元对称群[tex=1.0x1.214]vIC1ui1s5j6wm/e+z3rn5A==[/tex]的子群格.
- 群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的非平凡子群[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]称为[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的极小子群, 如果不存在子群[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]使得[tex=4.786x1.143]Dzl5s9mAcKaJyOhW6nnalZl2sR7LSXZSzGUFcgLlF5E=[/tex]. 试证: 有理数加法群[tex=0.786x1.214]Ye1cZVdr8VtT4RAHi8JqTA==[/tex]既没有极小子群也没有极大子群.
内容
- 0
给出对称群 [tex=1.0x1.214]VlaXkNO7I0w+AwTlQkUDyA==[/tex] 的一切非平凡的正规子群及相应的商群.
- 1
证明,如果[tex=2.571x1.357]qPdOsucFoqQhvPWJfpOGTG1E8YxKOwvuJPntT7Zq4x8=[/tex]和[tex=2.571x1.357]TIdnrqj3P/y7DlVAM8uPLBGtYpAxoce0RUXCIwP+2MU=[/tex]都是群[tex=2.571x1.357]WGC1CuEIXJ2UAqjN18lr2bMBb2LdtoR0igzQyVPRnF4=[/tex]的正规子群,那么[tex=4.571x1.357]wDjz07Yl796XjlsE+Ed5AaN26ggKLJMLHv4667RLlYg=[/tex]也是一个正规子群。
- 2
设[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]是有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群. 若素数[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=2.714x1.357]YG7qvLS9bCYW3nMIPQNAvg==[/tex]互素, 则[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]包含 [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的所有子群.
- 3
证明:若群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶子群有且只有一个,则此子群必为[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 4
试证有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的一个真子群的全部共轭子群之并不能覆盖整个群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex].结论对无限群是否成立?