设 [tex=5.357x1.214]35cV0l/sbEhGhcNky0b75Q==[/tex] 是半群, [tex=4.143x1.214]jWE/BZ61Jc3ue2kVQW3a3asWbzClVJt3vm2of0H5M5w=[/tex],如果 [tex=1.429x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 都与 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 可交换,证明 [tex=2.071x1.0]G9UTBsAN/J31qbWMRPoBXg==[/tex]也与[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 是可交换的.
举一反三
- 设[tex=5.286x2.429]AF7tJRUS5ZpR1VCpS3DR88fHHnERzhCfkiKn1ss2A3M=[/tex],证明积分[tex=4.143x2.643]Q0fk6ySZw1YRWF3qyf64ROmhGDC6eg4s0Miy1VLBQOI=[/tex],当[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]是圆周[tex=3.929x1.429]M0sn/fi/Rz9ean07Tx2wJQ==[/tex]时,等于0 。
- 设有非零向量[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex],如果 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=2.214x1.143]0r4yD2FUhMBrZI0Ja3cQ+A==[/tex],[tex=4.643x1.357]mYudu4hCS+Lfb4CA1kmzuk0JsvuG1VzazALUYw0OIQ8=[/tex] 共面,问[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]有什么关系?
- 证明:设 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 与 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 互素, 则 [tex=14.571x1.286]3yDmxXhzuZcoAVcPcBlAZYh2nsZ/N9H8//SAil1aIzRVriOdbwnmwDQyNOJVcFvmJ2CNRCnHTxIE2kkjJZtSdOxrz3foW5kqO0V/HgG+GV8=[/tex].
- 设平面曲线[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]与同一平面的一条曲线[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]相交于正则点[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex], 且落在直线[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的一侧. 证明: [tex=0.357x1.0]bWb/5nwZNz8h2qFmR2vFEA==[/tex] 是曲线[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]在点[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]的切线.
- 设[tex=5.286x2.429]AF7tJRUS5ZpR1VCpS3DR88fHHnERzhCfkiKn1ss2A3M=[/tex],证明积分[tex=4.143x2.643]Q0fk6ySZw1YRWF3qyf64ROmhGDC6eg4s0Miy1VLBQOI=[/tex],当[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]是圆周[tex=6.0x1.5]dyKGJk1NAvkd287OfdNxeN0vSEAyVGOJ5TgUyq3eGKI=[/tex]时, 等于[tex=2.214x1.143]kO6fIpZ8pPjJOsXxgsnRmQ==[/tex]。