设[tex=2.0x1.214]h5BeVqT5Z1GL62PdxuPBZQ==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的两个子群。证明: 当且仅当 [tex=3.071x1.071]3xgDjzfwjLudPzqGGkG7+w==[/tex] 或 [tex=3.071x1.071]5t6JH772shJGUim0IYHIDQ==[/tex]时,[tex=2.857x1.0]urJhYYDTzgVgGHegtUiqcg==[/tex]是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群。利用此结论证明: 群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 不能被它的两个真子群所覆盖。[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 能被它的三个真子群所覆盖吗?
举一反三
- 证明,群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的两个子群的交集也是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群.
- 设[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个子群,证明:[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的特征子群,当且仅当对[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个自同构[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]都是[tex=3.786x1.357]/hUAIv2XJLX3YXBqW5nP/A==[/tex].
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。
- 证明任一个群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 不能是两个不等于 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群的并集.
- 证明: 如果有限群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的每一个 Sylow 子群都是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群, 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是它 的 Sylow 子群的直积.