F[x]中,若f(x)g(x)=3,则f(0)g(0)=
举一反三
- 设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时( ) A: f′(x)>0,g′(x)>0 B: f′(x)>0,g′(x)<0 C: f′(x)<0,g′(x)>0 D: f′(x)<0,g′(x)<0
- 设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
- 若f(x)<0成立,则g(x)≤0必须成立;若f(x)<0不成立,则g(x)无限制。引入一个0-1变量y来解决这一逻辑关系: A: f(x)≥-M(1-y)g(x)≤My B: f(x)≥-Myg(x)≤My C: f(x)≥-M(1-y)g(x)≤M(1-y) D: g(x)≥-M(1-y)f(x)≤My
- 8. 设函数$f(x),\ \ g(x)$具有二阶导数,且${{g}'}'(x) \lt 0$. 若$g({{x}_{0}})=a$是$g(x)$的极值,则$f(g(x))$在${{x}_{0}}$取极大值的一个充分条件是( )。 A: ${f}'(a) \lt 0$ B: ${f}'(a)>0$ C: ${{f}'}'(a) \lt 0$ D: ${{f}'}'(a)>0$