设 \( A \)为 \( n \)阶非零矩阵, \( E \)为 \( n \)阶单位矩阵.若\( {A^3}{\rm{ = }}O \) ,则( )
A: \( E - A \)不可逆, \( E{\rm{ + }}A \)不可逆.
B: \( E - A \)不可逆, \( E{\rm{ + }}A \)可逆.
C: \( E - A \)可逆, \( E{\rm{ + }}A \)可逆.
D: \( E - A \)可逆, \( E{\rm{ + }}A \)不可逆.
A: \( E - A \)不可逆, \( E{\rm{ + }}A \)不可逆.
B: \( E - A \)不可逆, \( E{\rm{ + }}A \)可逆.
C: \( E - A \)可逆, \( E{\rm{ + }}A \)可逆.
D: \( E - A \)可逆, \( E{\rm{ + }}A \)不可逆.
举一反三
- 设`\A`为`\n`阶非零矩阵,`\E`为`\n`阶单位阵.若`\A^3=O`,则 ( ) A: `\E - A`不可逆,`\E + A`不可逆 B: `\E - A`不可逆,`\E + A`可逆 C: `\E - A`可逆,`\E + A`可逆 D: `\E - A`可逆,`\E + A`不可逆
- 设A为n阶非零矩阵,E为n阶单位矩阵,若[tex=2.857x1.214]i42F0iHtinJxyn/rXt5OZtfkqcVYW9NevvfEchuwEc4=[/tex]则()(A)E-A不可逆,E+A不可逆(B)E-A不可逆,E+A可逆(C)E-A可逆,E+A可逆(D)E-A可逆,E+A不可逆
- 设$E$是$n$阶单位矩阵,$n$阶矩阵$A$满足$A^{2}=A$,则下面说法正确的是( )。 A: $A=0$; B: $A=E$; C: $E-A$可逆; D: $E-2A$可逆。
- 若$n$阶矩阵$A$满足$A^{2}=A$,则( )。 A: $A=0$; B: $A=E$; C: $A$可逆; D: $E-2A$可逆。
- A为n阶非零矩阵,E为n阶单位矩阵,O为n阶零矩阵,若[img=48x22]180389809980e48.png[/img],则[img=49x21]18038980a29f286.png[/img]可逆