若矩阵[tex=7.214x4.786]YmZOrAutSxe6/7rdwvN+7/bZaY87MqrgU5rX5j/XTy/bT9xShFBoAuedhDWXKHL7w7GCrX+x8yCkVTzvYKM6Fs/kgNxXds/q5LeFXWehZ3o=[/tex]相似于对角矩阵 [tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex]。试确定常数 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的值;并求可逆矩阵[tex=0.786x1.286]syhD1QeVJHJnBYGPyhK8Pg==[/tex]使[tex=5.5x1.286]iuRNIgLZWIrQnIQsMkDqTe0eYCgDXz8mqp/NFlYQr8Q=[/tex]。(本题满分13分)
举一反三
- 若矩阵[tex=7.857x3.5]sSXBpxJWudVpH1R35o4LnA4lIqpBf4gH8eIU2tIDFvHUTa28LnVAl1Ag/LVtmAu+dU0hsU1hhCpG5YGpQ8ul9X0YZiiEbfbYY4waQDC3uoZh/ueoInJj//6K313tBkPa[/tex]相似于对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex],试确定常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的值,并求可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使[tex=5.286x1.286]inWzbGHM3BuvW87VMI4x1zvT5gGl553eJez0aB4E+qw=[/tex] .
- 设[tex=9.786x3.643]No14tepOrgpLFcwU7iwUQQvglEGGUy9ZiDuxX2HIvBX3d+/E7K58pAIcF/Nxs6hUCyiztM/DNypvc45YdZHZ8CLG12Q7V7KDDD3Y0dRNLUvtciSKRRGAMsa/GzOe80BV[/tex], 存在正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex], 使得[tex=4.857x1.286]rBT5/uNzgbWBBfGRE6xSbwOuiGdAi5ccrp7SXFh1DT4=[/tex]为对角矩阵。 若[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]的第一列为[tex=6.286x2.214]/mzsbC9+gbgDwnVXaJmchYWQD2ZNbI/BUvOLYyFtgvmLcvqQVQl953UEpLqqAwaq[/tex], 求常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]及对角矩阵[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex] 。
- 设矩阵[tex=9.429x3.643]sSXBpxJWudVpH1R35o4LnCGIOkycDZTkkPhY8mBIKIbwAeHt7Ug8XVMVGyxdxELbZmbQmzn0XHljZC59w/+iYhNL8ZZ7JVS/tNqKV85yGr7r9HJ13dVj/sx4hqJwWb6y[/tex],已知存在正交矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex], 使得[tex=4.857x1.286]qqZjVILGZVRAhgf21Vfsux42UL7UB5yw+5T8BXDq4/s=[/tex]为对角矩阵,且[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]的第一列为[tex=7.571x2.214]eeCanaQCFlwDWIBYI6oJvDhnQpfKKsvSO4a3BEPz5LPN32tKtDiz0O9vdZi30Kyz20Ut7MsCn6OCtyvgDBpjrQ==[/tex] . 求常数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],矩阵[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]及[tex=0.714x1.286]6GaLCkpufqH4y+Zpjb+RIQ==[/tex] .
- 已知[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]是常数,且矩阵[tex=9.0x4.786]bh860vCil1s72yls8vfnjat3Dbvojc8hLRWk/nCV3ebiRWizO89cYuTTo38zBjIGeD2hUrPnUa8IijGRdEA3Du2BH0MKt6kvI3x/s7hB57g=[/tex]可经过初等列变换化为矩阵[tex=9.0x4.786]eNRAQFs3w3YthMte51dkgg2JyKcCAoM3dAkTu32GTuAEcD3IpHb765sPI1zpYbGVJLtm0Lmy29PAyZrr/e0uk8grE58X5zesayEV+Qghuq8=[/tex];(1)求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex];(2)求满足[tex=3.571x1.286]sOfq1nMU4AuaHoSlEVk43g==[/tex]的可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]。
- 已知 [tex=2.071x1.286]Lw1m7LuL1SjurX1WRZuPUg==[/tex] 为3阶矩阵,且满足 [tex=7.714x1.286]ThWWPhndKkz3UClWdkawSBreeT7S5i5PvnTbUSWKYOOv9U2rV7yWwLvdAXkYzsfH[/tex],其中 [tex=0.786x1.286]KdMX/vrMoFuyctoWaUWH8w==[/tex] 是3阶单位矩阵。(I) 证明:矩阵 [tex=3.286x1.286]7/dUziihQFEuopQUmAB3jtRjn7Bmun7c4UQbytj87b8=[/tex] 可逆;(II) 若 [tex=7.571x4.786]174MZEe/izWSafpCRvJbd3cQKHCzrrjGGKpSfjzsHHVXpVP4uwNKwm6JKWYSK3g5xlXwIaRNk+2zOOmSaTeVcClZXyEuVtudF/ZEztSsKpA=[/tex],求矩阵 [tex=0.857x1.286]BQkHOimMmPUuGqQUunHC8A==[/tex]。(本题满分6分)