求证:(1) 若[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是主理想整环, 则[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的每个同态像也是主理想整环.(2) [tex=8.357x1.357]C3Weq6HRVeot5NeVvWaOX/dsxiuHRe8nl60JZDCW+mk=[/tex]是主理想整环.
举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是主理想整环, 则[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的任一非零素理想均为极大理想.
- 设[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是交换环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中的理想, 求证集合[tex=15.929x1.286]x1n1yoXwvapsKx5EdV+pZfepyJxGrnlRGZn5VJJE3eA7ay6nv77Fo7YoCa5wTVi2SNJjJsw27jPyW7aiIeaTopq9BlO+UMTHGDWIZfNjHRr6wlshzmlapvqJxD2xIxo4[/tex]也是环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想.
- 证明(1) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的任意有限多个理想的和还是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想 (2) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的任意 ( 有限或无限) 多个理想的交还是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为整环. 若[tex=1.286x1.357]TP6DNPZ0BXz9dGahH6oH3todNWR8QzFOwyHNRRUu2eE=[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的非零极大理想, 则[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为不可约元.
- (1) 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为含幺交换环, 求证环[tex=2.929x1.357]6PWl/fP3j/y7kKn3SuUmlw==[/tex]中每个理想均为形式[tex=2.643x1.357]bIca31SPWWCVnjLQzUHuxg==[/tex], 其中[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的某个理想.(2) 若[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]为域, 则[tex=2.857x1.357]9mjonrKL5MA/BYFXOHU6Cg==[/tex]是单环.