• 2022-06-18
    设直线[tex=4.5x1.286]ccq0/nGXDMjmvFHumPpvwg==[/tex]与直线[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],及[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的梯形面积等于[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],试求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],使这个梯形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得旋转体体积最小[tex=5.643x1.286]kqxbGOHRCGvBSaXkOZEY+g==[/tex]。
  • 知识点:旋转体体积,以及最值问题思路:作出平面图形(或求出该平面区域的[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]、[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]范围),进而求出以[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]为变量的旋转体体积,再求最小值。                                                         [img=271x231]1781f45b138a9be.png[/img]解:梯形区域[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]: [tex=4.071x1.286]zhljrX2vZn50HjIOX4rLKOqXfPFsTpsr79rtJdgePaQ=[/tex],[tex=6.286x1.286]j+5O2PCm54UEnnyDqoXkk13x2EfLeL+YhHZqK7Z5ASo=[/tex], [tex=0.714x1.286]Mjp1ERIg12NQkOrp1BseMg==[/tex][tex=17.786x2.429]ri4FdEkFWuvYPj4muzj62PSfk3jN1hTm7/Hex6ZM1h+7twTpfiR/nwd3LtRMYrkyd9AgzJPwI3w9IbhxKZf7lvg6zapgH5JWj1VXpahw7nPPIeZhFaJRgTL918NhS/Dx[/tex][tex=0.714x1.286]wbdAxWgHFhoV9XdVGDcK2w==[/tex]由条件[tex=7.286x2.0]VKvNGJbTt0QmaHoHvnr9d0lUtS0Kx0VSfgB3amDjiJE=[/tex],[tex=0.714x1.286]Mjp1ERIg12NQkOrp1BseMg==[/tex][tex=12.929x2.357]A6RFrYpMq3p3E3UgbyTJV97i+XjDMmO/PZvmEWWN5hNxx10ciu32asLMHdoDCW/J3Jdnt/MQQE4Y2I8AXHnrCS1WkMatL5OUk5QDXoPh5g0=[/tex][tex=9.714x2.0]uOdunFtsH9KSB0fvNX6D1mDtWokittp4pOqrrtKeW2vHlXvVij9xIx0EDmiR+cj7[/tex],得[tex=2.5x1.286]YujMub+wZUJq02Z1LykKSQ==[/tex],[tex=2.357x1.286]sf7c7AuUVGY9lixayRLrtQ==[/tex]

    举一反三

    内容

    • 0

      设抛物线[tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex]过原点,当[tex=4.071x1.286]zhljrX2vZn50HjIOX4rLKOqXfPFsTpsr79rtJdgePaQ=[/tex]时,[tex=2.357x1.286]4Z9GMN0FUKMIifK3xrTglg==[/tex],又已知该抛物线与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]及[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴所围图形的面积为[tex=0.714x2.0]BQ7Y89Ue+4zhZqRGXqiH6Qg3j168kuR7xZeu/fPVLEY=[/tex],求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],使此图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转一周而成的旋转体的体积[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]最小。

    • 1

      设抛物线 [tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex] 通过点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex] , 且当 [tex=3.643x1.286]J2AjFpkP+hpGpzwZ3DOuKA==[/tex]时, [tex=2.357x1.286]KBZIJbskVVrycDOoD9RU26AVc5tr4kgvfe08o5WindY=[/tex]。 试确定 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex], [tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex], [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex] 的值,使得抛物线[tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的面积为[tex=0.714x2.0]1E+pvnErbya/IWnEiDkCU0JOsH3Yd31nIoRJBfyMfkk=[/tex],且使该图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴旋转而成的旋转体的体积最小。

    • 2

      设抛物线 [tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex] 通过点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex] , 且当 [tex=3.643x1.286]J2AjFpkP+hpGpzwZ3DOuKA==[/tex]时, [tex=2.357x1.286]KBZIJbskVVrycDOoD9RU26AVc5tr4kgvfe08o5WindY=[/tex]。 试确定 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex], [tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex], [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex] 的值,使得抛物线[tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的面积为[tex=0.714x2.0]1E+pvnErbya/IWnEiDkCU0JOsH3Yd31nIoRJBfyMfkk=[/tex],且使该图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴旋转而成的旋转体的体积最小。

    • 3

      设抛物线[tex=4.071x1.286]iLGylujNvi+gawEaDCYVvw==[/tex][tex=2.643x1.286]vyfmBQ5KfPEu8TL7vREe3Q==[/tex]通过点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex], 且当[tex=3.643x1.286]J2AjFpkP+hpGpzwZ3DOuKA==[/tex]时,[tex=2.357x1.286]KBZIJbskVVrycDOoD9RU26AVc5tr4kgvfe08o5WindY=[/tex].试确定[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]的值,使得抛物线[tex=4.071x1.286]iLGylujNvi+gawEaDCYVvw==[/tex][tex=2.643x1.286]vyfmBQ5KfPEu8TL7vREe3Q==[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围图形的面积为[tex=0.714x2.0]1E+pvnErbya/IWnEiDkCU0JOsH3Yd31nIoRJBfyMfkk=[/tex],且使该图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转而成的旋转体的体积最小.

    • 4

      求曲线[tex=2.714x1.286]Ld4H7F8ShuxekFj6Tu3TmfuBAf8CV3McUQjwjOgcsWs=[/tex],[tex=3.786x1.286]BQBaxI8k9F73aCnSHszVhg==[/tex],[tex=2.357x1.286]F20DA9b5PZyvxJH27l4LOQ==[/tex]和[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]所围成的图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所成立体的体积。