证明:设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为幂级数(2)在 [tex=3.571x1.357]J/gPZBpwGHv4oUGrZadE5w==[/tex] 上的和函数,若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为奇函数,则级 数(2)仅出现奇次幂的项,若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为偶函数,则(2)仅出现偶次幂的项。
举一反三
- 证明:若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为函数,则 [tex=9.857x1.357]8USmHdFqvMrIwX+ztV4M7gB2th4y0rQL3FzmNZPVjSA=[/tex]
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 以 [tex=1.071x1.0]tieuzjBYrMcmxP3HXZSPGQ==[/tex] 为周期且具有二阶连续的导函数,证明 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 的傅里叶级数在 [tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex] 上一致收敛于 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex].
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为定义在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上以[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]为周期的函数,[tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex] 为实数.。证明 : 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在 [tex=3.429x1.357]yn+eS8j3jL70HAQbcELryg==[/tex]上有界,则[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上有界。
- (1) 叙述无界函数的定义;[br][/br](2) 证明:[tex=4.0x2.357]Skzfc0ZxjrbUnQ48HU5E0tXmPoDSwwji7Ikqu4Ix2eQ=[/tex]为[tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上的无界函数;[br][/br](3) 举出函数 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的例子,使[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为闭区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的无界函数。
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]对任意[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],[tex=2.5x1.286]EPSGJZaCuwY5xHx7jbphAw==[/tex]适合方程 [tex=8.286x1.357]NrfAfdVJZxj47IYGp0SatnPBpQm8CbV+z0k8TH8YZfo=[/tex]证明:(1)若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在一点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处连续,则[tex=5.0x1.357]0vg1WFsquVdtGeGJnyVAbQ==[/tex];(2) 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上单调,也有[tex=5.0x1.357]0vg1WFsquVdtGeGJnyVAbQ==[/tex];