证明[tex=1.214x1.071]ERAYMLhAZTY9mDX0C5cJmQ==[/tex]中任何非空开集的基数都是[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex].
举一反三
- 设[tex=1.929x1.357]2EHAxTqVcFCzvj4fdZzNqw==[/tex]是定义在[tex=1.214x1.071]ERAYMLhAZTY9mDX0C5cJmQ==[/tex]上的实函数.证明[tex=1.929x1.357]2EHAxTqVcFCzvj4fdZzNqw==[/tex]在[tex=1.214x1.071]ERAYMLhAZTY9mDX0C5cJmQ==[/tex]上连续的充要条件是对于[tex=1.143x1.214]99izTVkOg6z3Ylatn6B9Ww==[/tex]中的任何开集[tex=11.714x1.571]oi3H/Q7rrsjsbBsMXpPfe8f0gtMj3ZvHVcNjfZGFDxglqDixU5IOzsZJ7VVvIKzBdN/BpWA28ibWxCIA0EhgF6pHUDQ5hHcNproeO9IuZq8=[/tex]都是[tex=1.214x1.071]ERAYMLhAZTY9mDX0C5cJmQ==[/tex]中的开集.
- 证明[tex=1.143x1.214]99izTVkOg6z3Ylatn6B9Ww==[/tex]中的全体开集构成一基数为[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex]的集合.从而[tex=1.143x1.214]99izTVkOg6z3Ylatn6B9Ww==[/tex]中全体闭集也构成一基数为[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex]的集合.
- 证明当[tex=0.786x1.0]mfjRqhorWjKnT4vuQia3hQ==[/tex]是[tex=1.214x1.071]ERAYMLhAZTY9mDX0C5cJmQ==[/tex]中的不可数无穷点集时,[tex=1.071x1.143]g0IbrHa9ffhybTQXy4CAubbbHMTCiuTu1wV7RGCxDd0=[/tex]不可能是有限集.
- 证明由[tex=2.286x1.357]ay6tf6ymcaVAoPQIbN6WLA==[/tex]开区间中的实数[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]组成的实数序列的全体作成一基数为[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex]的集合.进而证明由任何实数组成的实数序列的全体所作成的集合的基数也是[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex].
- 证明区间[tex=2.0x1.357]khGQOVqy3eZik4Tp7/+YjA==[/tex]上的全体连续函数所作成的集合的基数[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex],同样[tex=2.0x1.357]khGQOVqy3eZik4Tp7/+YjA==[/tex]上的左连续的单调函数的全体所构成的集合的基数[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex].