在数域[tex=0.643x1.0]SrAoc7XdpRH4/IzfgfsX9A==[/tex]上的所有关于[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的多项式构成的线性空间[tex=1.786x1.357]OsT+2WwLJzEQyHN3KIjpRw==[/tex]中, 所有满足[tex=5.286x1.357]IpEo4at8FvHN6+GTgeEKZA==[/tex]的多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的集合记为[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]。所有满足[tex=6.071x1.357]QAKd6JuXD3qmM5BgGo/OSQ==[/tex]的多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的集合记为[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]。证明:[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]与[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都是[tex=1.786x1.357]OsT+2WwLJzEQyHN3KIjpRw==[/tex]的子空间,并且[tex=5.071x1.357]tlamONh114ERdbgLHF/usA==[/tex],[tex=4.929x1.357]5nxtcT518/WIpHqVQ/9pKou/ORliLqwlFRp+bnRXU8A=[/tex]。
举一反三
- 设[tex=1.714x1.214]jsM/Lg33JMLvoOCckk59rQ==[/tex]是线性空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中的向量,[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的子空间,向量[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]与子空间[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]生成的子空间记为[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex],向量[tex=0.571x1.214]CyLt5nwVs0oLAbCn8AssqQ==[/tex]与子空间[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]生成的子空间记为[tex=0.929x1.286]nrJzN9qRndstwtgYfof7gw==[/tex]。证明:如果[tex=1.929x1.214]6AEanCozWf0T3pTNatNASA==[/tex],但[tex=2.857x1.286]eyYnFseADpS7d7w9tWtMcACaEqY5RUcLKhFvrazV6RM=[/tex],则[tex=2.714x1.071]0bIJyKcLSZsDO3hqr0GGng==[/tex]。
- 设 [tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex] 是以数域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 为系数范围、 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 为字母的全体一元多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 组成的 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的线性空间. 求证:[tex=4.857x1.357]bivgtssQ+sS+7Fn1Z0yfg6T7tBGhaTZYR9UTmID1rAU=[/tex]
- 证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
- 设[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的线性空间([tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都不必是有限维的),[tex=0.929x1.0]9ZOFmxCSrFOtuQaSWCydPg==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]到[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]的一个线性映射,[tex=1.143x1.071]Z+TPszFO7LPa8KJ9E9RUwQ==[/tex]是[tex=0.929x1.0]9ZOFmxCSrFOtuQaSWCydPg==[/tex]的对偶映射。证明:[tex=6.857x1.429]kUgEPF/gdFSEI5/1Hb0q1BMyRtAjGBys17NEkKgvHKpCBE3gT8edJaET4L5GXGrWFUg3jXMSHvEi1sQXe+w9IA==[/tex]。
- 证明:设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元, [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的一个首一多项式, 则下列条件等价:(1) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 在域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的极小多项式;(2) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上不可约, 且 [tex=3.429x1.357]+nzvPBU74mdetNBw41Ue1A==[/tex](3) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的次数取小的非零多项式;(4) 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上任意一个以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的多项式, 则 [tex=4.857x1.357]+3zmuKty1AhSMDB3tNdbXzDDg/gxGAj+UD6ur3wtHjE=[/tex]