在 [tex=1.571x1.0]59Vr7gFzrIoM2z8c71HoZA==[/tex] 面上求一点,使它到 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴、[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴及直线 [tex=4.929x1.214]sLou6pZoaUG+KDOnUMxU+A==[/tex] 的距离的平方和最小。
举一反三
- 试在 [tex=2.143x1.286]d9EaY6XTsJOJE9+ehLehFg==[/tex] 内求一点,使过该点的直线平分由曲线 [tex=2.214x1.214]+uhjmb2E5xVh5Jr8m9fmgA==[/tex] 与直线 [tex=2.429x1.0]CMo0rF5qZtcVHoxL36R95Q==[/tex] 及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴, [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴围成的平面图形.
- 在[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴上求一点,使它到两个平面[tex=8.429x1.214]3Wb/Xe0QCy5OJeaNp/f9GtPr+jJIKeIE5mPzHiyWit4=[/tex]和[tex=4.929x1.214]8y2NFRktZONp2VoxtJku8AmPehZAhm1JAfCq+2BupAU=[/tex][tex=4.071x1.143]yLUm0L/QmPG0dSr+VrSGOg==[/tex]有相等的距离.
- 已知两个正数 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 之和为 8 ,若要使两数 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 的立方和最小,则 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 各应等于多少?
- 求曲线[tex=2.786x1.357]Efksyl2nsVFjZIt05jVcHg==[/tex]与直线[tex=4.0x1.214]An54X9kuw9HgGkjH0a2Czw==[/tex]和[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成的平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴和[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴旋转而得的旋转体体积;
- 区域由曲线[tex=6.214x1.357]RKt9CzdSQyE4OjweWXJOaLdBCddLqAjvrwwIoaXdGtE=[/tex],直线 [tex=4.0x1.214]fTgroTGgk7GoVcGlL+0PsA==[/tex]和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围成. 求下列旋转体的体积 公式:(1) 绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴 ; (2) 绕 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴 ;(3)绕水平直线[tex=1.857x1.214]2q61NhXyDarSGYriVZMCyg==[/tex], 其中[tex=6.571x1.714]xmbeAqqtZRuKLAq90Tsc++Y5QV4mlm1ABvJ6YKs4y72SOu8tlNHlnD2ILX+v/un+[/tex]