设独立随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从对数正态分布,证明随机变量[tex=3.786x1.286]kmMMv62vIKD7xkBnmZfcTg==[/tex]也服从对数正态分布.
举一反三
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从对数正态分布,证明[tex=3.929x1.286]OG6uWFmCXwvSttUAshn8GQ==[/tex]也服从对数正态分布.
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 与 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 相互独立,当 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 与 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 均服从下列哪一类分布时, [tex=2.857x1.286]LLZfBgVk/PQ2Pm23zEkNaw==[/tex] 也服从同类分布 A: 泊松分布 B: 几何分布 C: 指数分布 D: 正态分布
- 假设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立且都服从标准正态分布,证明随机变量[tex=4.929x1.286]coh7fE0sIReNY5IfTNUY2Q==[/tex]和[tex=5.0x1.286]eRuRwUByswZCdjb6Xo+NHA==[/tex]相互独立.
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从参数为[tex=3.286x1.286]PBtv7Mze0ABRtZ8Bf5DH5A==[/tex]的[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,而[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服从区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的均匀分布,证明随机变量[tex=4.929x1.286]bstb6Acm/GnARrPc8f1uPw==[/tex]的概率分布仍然是均匀分布.