举一反三
- 设[tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正交矩阵,且[tex=4.0x1.357]POsnup5weJxpS5OVpIh35VHXUbKJ/mqqbwb4d3G7lj4=[/tex],证明[tex=2.286x1.143]2zmmF6+x7+n6wGG+8KOAbQ==[/tex]为不可逆矩阵.
- 设A,B均为n阶正定矩阵,证明[tex=2.571x1.0]WccFGH0Sag9UszFhapFwng==[/tex]也是正定矩阵.
- 如果 , [tex=1.571x1.0]H/+/tjMT6G7bDjni13g9xw==[/tex]都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正定矩阵,证明:[tex=2.286x1.143]ibPZixdhTGkPvSlf9Hm3BA==[/tex]也是正定矩阵。
- 设 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 证明:若 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都半正定, 则 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 的特征值全是非负实数.
- 设 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定实对称矩阵, 证明: [tex=3.071x1.0]0jm1norro6DslpbfZCCeIA==[/tex] 的充要条件 是 [tex=4.857x1.357]ApBtKiFHAOgbksEzlkUgQasHYMxKUd8U1Fig9EONEBg=[/tex]
内容
- 0
设[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定矩阵,证明 [tex=2.286x1.0]cODRs3LlUK/sz34bAVFlUg==[/tex] 也是正定矩阵。
- 1
设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex],[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]都是正定矩阵,证明:[tex=3.0x1.143]O8o/cZDTF8ipMqduQHBWgi6pxFN4tTQV4LSHcTIya2I=[/tex]也是正定矩阵.
- 2
设 [tex=2.286x1.214]N8WVEUSbiez8ysjtBlV0Dg==[/tex]分别为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶、[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定矩阵,证明 : 矩阵 [tex=5.214x2.786]jcCMHflCR8OS9TosV6N5vFgmGw4YpjjLNUpHC7uMFJjICUyeLM9Ie6rlAa/40BUhAsmOomvUa7WNsWvkeQozyBI/92MbNNylDQaG5nGHMZBrxFsmzDkqHn25bIkcDLK3CFVFc6YKMLp9xad5wJh2lg==[/tex] 也是正定矩阵。
- 3
证明: 设[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]分别为[tex=1.929x1.0]+MkgvJhrh9DSU9I+bn6v4w==[/tex]阶正定矩阵,则分块矩阵[tex=7.0x2.786]3FAQJGao+NWjhr2M60sqCmdeDA7TuDWrnpStZW5CZick8l4H5WXvjBIvz00DN32NcvLxIbvUc6ZsSjQIzSJc+g1NEnTFjvOFllrPJ28ct2jkhRIRcI89DywuL8qHekFisiEaui9473ovIuiQ/zMMEiWnZcKmZd9hE/kCQmimlp4=[/tex]也是正定矩阵.
- 4
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定矩阵,证明[tex=2.286x1.143]cCTnJPOzJnKbc3MpDCUIow==[/tex]的行列式大于 1 。