证明:如果 [tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]为正定矩阵,则[tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex] 的伴随矩阵也是正定矩阵。
举一反三
- 证明:如果 [tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]为正定矩阵,则 [tex=4.857x1.357]uY48VnAc8VisHlRLvxn0av2rokfAihK01BjvB1/i3O4=[/tex]。
- 设[tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,如果矩阵[tex=6.143x1.357]sb0lI+O+hg9lDaI90Oub4JkVwgoQwUeWOJ5eCSgwqeWiy5uq90e5frG0SZbGhn8x8L+iUg8dSz8qE5s7bm+0UG+nJovMWLop6tcSEeVuHtygXSNTlKd+U8XJKdZ8Qi3N[/tex] ,试证 :当[tex=2.429x1.071]8zpXB85KiofkRevQFrdlFA==[/tex] 时,矩阵 [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]为正定矩阵。
- 设 [tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]是正交矩阵,试证:[tex=2.0x1.214]nRQjYF2OlPZYzzHDaDkisA==[/tex] 和[tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]*也是正交矩阵。
- 设 [tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]为三阶对称矩阵,且满足 [tex=5.429x1.357]G9Pd7WZBRKPvq6UJGYu4sLE5zhizYOmO8fsTHyFBjpU=[/tex], 已知[tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]的秩为2。 试问 : 当 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为何值时,矩阵[tex=3.0x1.143]dOO4G/9MFkf9yWKUHN/qNvLCh+dPLGBsE7k+ko0VMwE=[/tex] 为正定矩阵。
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex],[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]都是正定矩阵,证明:[tex=3.0x1.143]O8o/cZDTF8ipMqduQHBWgi6pxFN4tTQV4LSHcTIya2I=[/tex]也是正定矩阵.