设f,g:[a,b]→R是可导函数,且g'≠0,证明:存在c∈(a,b),使得[tex=7.929x2.714]GdXxD7RE8YiMfRi6s/SYmUXeBtlzjSevUjLM+ZksGOVLjgrb0P5fRg1SDmdSu1/WuGyoY1eBUyFe+VS/tVpHDw==[/tex].
引入辅助函数[tex=15.643x1.357]i8C4x15Vx0F6UQ7gV9Cj/rT1waWn6+g/7c8PYe3ZcV6m+NplXq2rxYSv5p8n6RL7[/tex](因为所证等式可写为[tex=17.643x1.429]h4i6ln0mkDUIXxTaMGJZHWUCv4coZSQLSVupigaWAVGr+dm2zu4gnBdws4dP/unUIWG3EFmTypXBCm3src26a5mdSsxtMQ4p94YAeD5sLpM=[/tex],恰好是F(x)在点c的导数),由题设条件知F(x)在[a,b]上连续且可导,又F(a)=F(b)=f(a)g(b),满足Rolle定理条件,故至少有一c∈(a,b),使F'(c)=0.因为[tex=21.643x1.429]vcoFvsi7S06HgXTsHmMDCTvmpcsf78DDsBz+Aei/1bFyh21GbqEYzO/X8v6VlcGiQro6abYUmrTI+9bpjs6Hf6wsu3oGs3sWT5Az+pfM6UHbheh28InAp/A3rr3wA+EJ[/tex],所以[tex=18.929x1.429]h4i6ln0mkDUIXxTaMGJZHUGXKfG/kTvDC+K2ugg0emg4bJQO7xATbutpa049ONpTeAzWjZkUeZ3AF7LvTfnBdfsqC9hSrKuDRVtm8b7l6Ds=[/tex][tex=15.643x1.429]0wE+lzpOTG/dHlyPyyiUlHskBlejO82jm0zUhEdNXA7NlEGSBF3M5/DA/9GDs9f1qC120TzrTqH4Brdkxy7kRw==[/tex][tex=14.929x2.714]3BfCUQwP4q5imz2POvoMMtNIZYbVcDc3IvE2px7SW/9IKh8WvkhBYRFov66KoG8iZ6Qfj5IuF5IcBsCQFIQsf3fLx29oSjauLXXJQAzlXFwN1qNnp1pz7oNOk+osPAm9bE6jBVO3pd/wsT0IqMU1zwvW/HJd9k/+Y7oYS5cG/X8=[/tex].
举一反三
- 设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
- 设函数f具有一阶连续导数,f''(0)存在,且f'(0)=0,f(0)=0,[tex=11.143x2.929]FgiJWgRQAKO6KUAKNMtpr42BveQYl/ToVviQ5cCtM9wcSY0QBIbGsihuelZ2Y0bAzYEbycD2Q2vfi4GC2Ijs1kB6/BRoIojNsaonEeVPYMMzs1ywITo1iMnLUJQZym3e[/tex].(1)确定a,使得g(x)处处连续;(2)对以上所确定的a,证明g(x)具有一阶连续导数.
- 设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
- 设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
内容
- 0
设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0,
- 1
设f(x)及g(x)在[a,b]上连续,证明:若在[a,b]上,f(x)≥0,且。
- 2
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]
- 3
设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
- 4
设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在[a,b]上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].