举一反三
- 设 [tex=4.0x1.357]zg93hysKV7tYatsom61VnQ==[/tex] 是曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的一个参数表示, 证明: 曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的参数曲线 [tex=1.357x0.786]M6ehz/katz5+UuZLyv9XuA==[/tex] 常数和 [tex=1.286x0.786]iCVy1X1XDEZ3BhCDPkCybw==[/tex] 常数是曲率线的充要条件是 [tex=4.0x1.0]M/edCBd3V8iB/X7pCUIRXw==[/tex]
- 设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是 [tex=1.214x1.214]G8q0grlUAVkIT66XGAEVzA==[/tex]中的一块曲面,它的主曲率是两个不相等的常值函数.证明: [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是圆柱面的一部分.
- 曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]分别是 曲 线[tex=4.0x1.357]TRxrT+fJZgGH6o82kNImXvprENVSesWwclyQ9tDT6Q8sCHyzpNWY0WRXLRMzgZRl[/tex] 为自然参数)的(1)切线, (2 ) 主法线, (3)付法线形成的曲面,求曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的第一二次形式。
- 求曲面[tex=5.071x1.357]vNht04XoJXQmdR/IJ008MjJpZOQuJVDbL2QE1t2RMPg=[/tex] 的全曲率和中曲率
- 曲面 [tex=5.429x1.357]Lg5Phrk4fm+3iA/jXTdBAA==[/tex] 上的一条曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 称为曲率线,如果曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 在每一点的切向量都是曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 在该点的一个主方向. 证明: 曲线 [tex=8.929x1.357]rWwQlBxD3aXQXZiWg+hy0sodtqTCBTrdUmHz31xydaU=[/tex] 是曲率线当且仅当沿着 [tex=2.643x2.429]GF4qzg9/Su8+nYXFNMI9yv6KkBP0vaXvxssi2KGGaM4=[/tex]与 [tex=1.214x2.429]Urrn5wfTdykIP5J7P3smyE15KoH6F71sdbyLIUJo+Jg=[/tex] 平行.
内容
- 0
假定[tex=0.786x1.286]idFowbYy18dnAiDpSURrJA==[/tex]是曲面[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]上的保长变换构成的变换群,并且保持曲面[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]上的一条[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]不变. 证明:如果[tex=0.857x1.0]LLLZ1Q76g93wjpcfDoZmPg==[/tex]限制在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上的作用是传递的,则曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的测地曲率必为常数.
- 1
设矢函数[tex=7.071x1.357]vVCiEN6xzQKzFknMDYUgL1y0ocX0WB0mKqoELJcTMAnEkhEx8yNpemLVA99fl9jv[/tex] 其中[tex=13.714x1.5]VO5TTYvqpVBFB738HkBpkqTMPV6POl3uu1ii9Ki3LEtJHDrKrdEkUImZ2pNZW2iZ2iuLZPBADU5gJMMTdHLoe4tHDUuS5iCL0ksE3BRNzvg=[/tex]是曲面[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的参数表示。(1)确定曲面 S 的形式,(2)求一个区域,使在这个区域上 矢函数[tex=11.357x1.357]1pDyXfH2ua2tFDVGkYvNDK2e/m02QCL5qaUGs6eDHnKzWfm8Efkc8iLaRzwJ3p3j+wnx5T/O4eYHeWlr4ZPGcA==[/tex]是曲面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 的参数表示(3)建立上述参数表示间的变换。
- 2
证明: [tex=7.929x1.571]S5H2qPrTzj7m7AsYEiwedRr09I+r3H2LLGarKuCR1tP0B2wkGQ8IQ3TsdPU1fby1[/tex], [tex=6.214x1.571]KPbm1Q93LoCcdLtvWwDl9EqyBLQPsJVl1BzvUvOqKlg=[/tex], [tex=4.786x1.571]FJ/jinz2570F+eA6GLq1itVrdk/S5Pc1kwP7Irs5/u0=[/tex]是极小曲面.它称为[tex=4.286x1.214]Q4dqny/7Io1hqZ1bOnPgOw==[/tex]曲面. 证明它的曲率是平面曲线, 并求曲率线所在平面.
- 3
指出下列各方程表示哪种曲面:(9)[tex=4.5x2.5]LyOhjw37A0y1HsCE7SG4R6W666QsyCQyqJPHBS0fb9k=[/tex]
- 4
设[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]为直纹面 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]上与直母线处处正交的一条曲线, 曲面[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]沿曲线 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]的法线生成另一直纹面 [tex=0.643x1.214]6YejGhcaG9Lqq9kP3sG4aQ==[/tex].证明: [tex=0.643x1.214]dUnGSZWETboZwpS74sBQKw==[/tex]是可展曲面[tex=1.929x1.0]bMRrINhuwlMbjrHDeWypos2lujq04B38R0+QsM7TJWY=[/tex]是可展曲面.