设[tex=2.357x1.071]0nq0b1fEFW/AV6tuzNPMsA==[/tex]矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为[tex=3.857x1.357]qXpz7Vckr31FXDcDaN2KhQ==[/tex]证明:存在[tex=2.143x1.071]rEyV9COcOO6bGHvQoT8WZA==[/tex]列满秩矩阵[tex=1.0x1.214]szVnMPaRHLo99rUmmmexUw==[/tex]与[tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex]行满秩矩阵[tex=1.143x1.214]33XDFahjdy1KHCYObeGaBg==[/tex],使得[tex=3.714x1.214]M4XIxclCkO36b8kKPZybyg==[/tex].
举一反三
- 一个矩阵称为行 (列) 满秩矩阵,如果它的行(列)向量组是线性无关的.证明:如果一个[tex=2.357x1.071]0nq0b1fEFW/AV6tuzNPMsA==[/tex]矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为[tex=0.786x1.0]oqR8O5ECXDp5f/4iM1EJLw==[/tex]则有[tex=2.143x1.071]rEyV9COcOO6bGHvQoT8WZA==[/tex]的列满秩矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]和[tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex]的行满秩矩阵[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],使得[tex=3.286x1.0]y0QpTXNFx3ADRFNmRLSZAw==[/tex]
- 证明:设[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩为 $r,$ 则有 [tex=2.571x1.071]cx+2xSos1xod7QXaYyONqA==[/tex] 的列满秩矩阵[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]和 [tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex] 的行满秩矩阵[tex=1.071x1.214]yt4RbNiVhn8ZYcZyQJBRDA==[/tex]使[tex=3.286x1.214]2MpBj3HxuvgFGXLpO4ZTTA==[/tex]
- 证明:设[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 则有 [tex=2.571x1.071]cx+2xSos1xod7QXaYyONqA==[/tex] 的列满秩矩阵[tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex]和[tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex]的行满秩矩阵[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 使 [tex=3.286x1.214]2MpBj3HxuvgFGXLpO4ZTTA==[/tex]
- 一个矩阵称为行(列)满秩矩阵,如果它的行(列)向量组是线性无关.证明:如果一个[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex],那么存在[tex=2.143x1.071]Rtxts52p4rdDLdHA6Amz2w==[/tex]的列满秩矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]和[tex=2.286x1.071]Ef3ubbPzNaK2nOISNr/qww==[/tex]行满秩矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],使得[tex=3.071x1.0]hNGs1Px60d+kQ9QCRfyP3A==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵,证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]当且仅当存在数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.143x1.071]Rtxts52p4rdDLdHA6Amz2w==[/tex]列满秩矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=2.286x1.071]Ef3ubbPzNaK2nOISNr/qww==[/tex]行满秩矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],使得[tex=3.071x1.0]Mb/+JoHmaaZzuBXR7KsjSg==[/tex].