设f(x)、g(x)在[a,b]上连续,且g(x)>f(x);g(x)*f(x)>0,用S1表示由曲线y=f(x),直线x=a,x=b以及x轴所围平面图形的面积,S2表示由曲线y=g(x),直线x=a,x=b以及x轴所围平面图形的面积,则().
A: S1>S2(
B: S1<S2(
C: 当f(x)>0时,S1>S2(
D: 当g(x)>0时,S1>S2
A: S1>S2(
B: S1<S2(
C: 当f(x)>0时,S1>S2(
D: 当g(x)>0时,S1>S2
举一反三
- 给定解释I:①个体域DI为整数集合 ②a = 1 ③f(x, y) = x-y,g(x, y) = x+y ④F(x, y)为x < y. 赋值s1:s(y)= -2. 在解释I和赋值s下,∀x(F(x, a)®F(f(x, y), g(x, y)))的真值为______
- 设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
- 设函数f(x)=x2,0≤x≤1,而S(x)=,-∞≤x<+∞。其中,(n=1,2,…),则S(-1/2)等于()。 A: -1/2 B: -1/4 C: 1/4 D: 1/2