4. 函数$f(x)=3x \sqrt{5-x} $的上凸区间为
A: $(-\infty,\frac{5}{3}) $
B: $(\frac{5}{3},5) $
C: $(-\infty,5) $
D: $(-5,0) $
A: $(-\infty,\frac{5}{3}) $
B: $(\frac{5}{3},5) $
C: $(-\infty,5) $
D: $(-5,0) $
举一反三
- 函数$f(x)=x^3-5x^2-8x$的上凸区间为 A: $(-\infty,\frac{5}{3}) $ B: $(\frac{5}{3},+\infty) $ C: $(-\infty,-\frac{5}{3}) $ D: $(-\frac{5}{3},+\infty) $
- 函数$f(x) =3x \sqrt{5-x} $的单调递减区间为 A: $[0,\frac{10}{3}]$ B: $[\frac{10}{3},5]$ C: $\mathbb{R}$ D: $[-\infty,5]$
- 函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
- 函数$f(x)=\arctan x$的带佩亚诺余项的麦克劳林公式为$$f(x)=x-\frac{x^3}{3}+\frac{x^5}{5}+o(x^5),$$由此可知,$f^{(5)}(0)$的值为 A: $\frac{1}{5}$ B: $1$ C: $24$ D: $\frac{1}{600}$
- 微分方程\(2y''+5y'=5x^2-2x-1\)的通解是( )。 A: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2+\frac{7}{25}x\) B: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2\) C: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3+\frac{7}{25}x\) D: \(y=C_1+C_2e^{-\frac{5}{2}x}-\frac{3}{5}x^2+\frac{7}{25}x\)