设[tex=3.0x1.286]uy88dPGxTPRl82V63mMN1w==[/tex]在[tex=5.0x1.286]YqH1/TA5rT38hrxtLXp1ZsrQpvZ6fZBPRJIMtcltzDk=[/tex]上连续,[tex=2.286x1.286]NYppJqv/blXPlGQlncwegg==[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上连续,且对任意[tex=3.643x1.286]NvSU0Evv5X0Mn23pktkiUm7mnooWj8siWcA9R6/IBpA=[/tex],令[tex=12.071x2.643]Wi3NsadANuOutivK5yoL/tjIdavb04Y7+e9YhQ5t0WbcBBm8Sab1vzVJiIJN1rpo[/tex],[tex=4.857x1.286]YPiXln35VbFZwRw1qebPNC/mxvz5Wi8NCIeJXzYWeYc=[/tex] . 证明:函数列[tex=3.357x1.286]emk7uvDBYGMjzMq4RmFEZxD+/ilSQn+brP6l652JoW0=[/tex]在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上一致收敛 .
举一反三
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]
- 设[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为有界闭区间[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上的连续函数,证明:(1)存在严格单调减的多项式序列[tex=2.143x1.286]kEVamP1n+dSuT3obt6qedLSWB5FYn+OZG9N822YuJYc=[/tex],它在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上一致收敛于[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] . (2)存在严格单调增的多项式序列[tex=2.143x1.286]kEVamP1n+dSuT3obt6qedLSWB5FYn+OZG9N822YuJYc=[/tex],它在[tex=1.929x1.286]0UMnlwcnmtQAgoeNciVtQA==[/tex]上一致收敛于[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] .
- 设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在[a,b]上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)