[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]理论认为人生来并不一定厌恶工作,要求工作是人的本能。
举一反三
- 设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 服从二项分布,已知 [tex=8.857x1.286]i2Z5Uf6DCEKk3kUuqFJqMBMPcT40TtxFiK2OLjQwcas=[/tex] , 求 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 的分布律
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 设矩阵[tex=10.286x3.929]r+tiAx6ClSaeP7cZbqpjmU2jA8OfocZwi1HjRH+Ylr2XvckDNXltPwV5JFJ+Ly07gOR43TRiiKsRQVHTf91QqbOE+NRimz/nYtjLvyaMLTEnfTdtd9wtRT5d840Dj9z+[/tex],矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]满足[tex=7.643x1.286]mdLdzaMkJ0bZ1Q+PvHfNXvayLD3A1ZlECG2+4G0qDxY=[/tex],试求矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]。
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是一个满足第一可数公理的空间,证明:[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是Hausdorff空间当且仅当[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]中每一个收敛序列都只有一个极限点。[br][/br]
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在数集[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]上有定义,试证:函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]上有界的充分必要条件是它在[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]上既有上界又有下界。