把复数域 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 看成实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 上的线性空间, 求它的一个基和维数, 以及每个复数 [tex=3.286x1.143]YybJwpsEnPMMiWeCL5Wj0sJK2XRXPyb82cD7gnmgaU8=[/tex] 在这个基下的坐标.
举一反三
- 把复数域[tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex]分别看作实数域[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]和复数域[tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex]上的线性空间。令[tex=3.357x1.357]OdhCw+D3erTUyavo5Tsp8HpHPQvhDdztrx/7euoIQe8=[/tex],[tex=3.143x1.071]tKZ4+lzIrca0NrM9n9B7auL09N99KTs7e7cueoZzdB4=[/tex]。试问:[tex=0.929x1.0]+X2MEmnb+Rya1bmoLOfXzw==[/tex]是不是[tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex]上的线性变换?
- 令 [tex=12.143x2.786]pSCOUldRRliBGKoKusoPeyxHVDDBCRvg2aLZ3lSfrRhdCkZgBgO3yIc6UVxx5cGgV4+C+kzcZOykQY2nRMMHv3wE2kHEj7z7C3axbIglwQOx1DMdPp/CG0Zh0xphA/bK1+mlRFIZa9Eo4nMouD3fMg==[/tex]证明复数域 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 作为实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 上的线性空间与 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 同构, 并且写出一个同构映射.
- 证明: 复数加群[tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 同构于[tex=3.286x1.143]DJNaoQ1k9ByRZLAbxv4wGTyoWna6t4Ckkmp16ucQpEw=[/tex]
- 证明: 实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 作为它自身上的线性空间与线性空间 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]. 同构.
- 证明,复数域[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]作为实数域[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]上向量空间,维数是 2。如果 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]看成它本身上的向量空间的话,维数是几?