设矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,证明: [tex=2.0x1.214]bB6MSaCzjTYi/viQyxJE0g==[/tex]和[tex=2.0x1.214]+ViHPiY1x3grdTX5xtwu9Q==[/tex]都是对称矩阵.
举一反三
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为实矩阵, 证明: [tex=2.0x1.214]bB6MSaCzjTYi/viQyxJE0g==[/tex]与 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩相等.
- 设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,且[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为对称矩阵,证明 [tex=2.714x1.0]DxwbvStVdvuC7mTHegGPzg==[/tex] 也是对称矩阵。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵, 已知 [tex=5.5x1.357]AhNdH2MMZrSh49k5SUPih3WmvYY4iHWErcMsIMMT5L8=[/tex]证明:当[tex=2.214x1.071]64bbjuyExeVSV8gL25b8fg==[/tex] 时, 矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为正定矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵,其中[tex=3.143x0.929]l6Jw54gxNWln0dfsw44Jtw==[/tex] 如果[tex=2.786x1.0]YX5lolnI6Ykt6Dnvpiqecw==[/tex], 证明: 矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的列向量组线性无关.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是实数域上的矩阵,证若[tex=3.5x1.214]KGIiD7/J6rwYC2vzbBSVsA==[/tex],则[tex=2.357x1.0]9NbdQvUYYjUNdQ4QcYRUMw==[/tex]。提示: 考虑[tex=2.0x1.214]bB6MSaCzjTYi/viQyxJE0g==[/tex]主对角线上元素.