将抛物线[tex=5.071x1.286]xbY/q2WdnfgKTLKpnQq4NQ==[/tex]在横坐标0与[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex][tex=4.714x1.286]twbOqople/vuP4aQiMLpQg==[/tex]之间的弧段和[tex=2.357x1.286]+73H4LSgEG66xxVgrtTUHQ==[/tex]以及[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴所围图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转,问[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]为何值时,所得旋转体体积[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]等于弦[tex=1.571x1.286]QNlNAkUriJOpIh2KTIOofw==[/tex]([tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]为抛物线与[tex=2.357x1.286]+73H4LSgEG66xxVgrtTUHQ==[/tex]的交点)绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得锥体体积。
举一反三
- 设抛物线[tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex]过原点,当[tex=4.071x1.286]zhljrX2vZn50HjIOX4rLKOqXfPFsTpsr79rtJdgePaQ=[/tex]时,[tex=2.357x1.286]4Z9GMN0FUKMIifK3xrTglg==[/tex],又已知该抛物线与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex]及[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴所围图形的面积为[tex=0.714x2.0]BQ7Y89Ue+4zhZqRGXqiH6Qg3j168kuR7xZeu/fPVLEY=[/tex],求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],使此图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转一周而成的旋转体的体积[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]最小。
- 设抛物线[tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex]通过点(0,0),且当[tex=3.643x1.286]J2AjFpkP+hpGpzwZ3DOuKA==[/tex]时,[tex=2.357x1.286]KBZIJbskVVrycDOoD9RU26AVc5tr4kgvfe08o5WindY=[/tex]。试确定[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]的值,使得抛物线[tex=7.143x1.286]7yFMwM/4Nd+lfHNMTRRu+ac7hLI+DKw4KXRhJb/AHio=[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围图形的面积为4/9,且使该图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转而成的旋转体的体积最小。
- 求由[tex=2.857x1.286]YGjPDKN3x4dIOLKpcyfvFw==[/tex],[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]uobRreoCWaWev0oqHEAzQw==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围成的图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得旋转体体积 .
- 设抛物线[tex=4.071x1.286]iLGylujNvi+gawEaDCYVvw==[/tex][tex=2.643x1.286]vyfmBQ5KfPEu8TL7vREe3Q==[/tex]通过点[tex=2.143x1.286]q8d9ecMZwZI3gbdeOe+7AA==[/tex], 且当[tex=3.643x1.286]J2AjFpkP+hpGpzwZ3DOuKA==[/tex]时,[tex=2.357x1.286]KBZIJbskVVrycDOoD9RU26AVc5tr4kgvfe08o5WindY=[/tex].试确定[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]的值,使得抛物线[tex=4.071x1.286]iLGylujNvi+gawEaDCYVvw==[/tex][tex=2.643x1.286]vyfmBQ5KfPEu8TL7vREe3Q==[/tex]与直线[tex=2.357x1.286]jgIRiGqlkdCMqO92sJAASg==[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex]所围图形的面积为[tex=0.714x2.0]1E+pvnErbya/IWnEiDkCU0JOsH3Yd31nIoRJBfyMfkk=[/tex],且使该图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转而成的旋转体的体积最小.
- 计算由[tex=4.929x1.286]KcATOC4C/QxLy+afkCNolEsn48tZQewI7jfwOmKP5Bs=[/tex],[tex=2.357x1.286]+lfyPLkaB2aZzha73p3Bvg==[/tex],[tex=2.357x1.286]+1uQITH0WA9VdOa9Vpywhg==[/tex]所围成的图形绕[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴旋转所得立体的体积 .