• 2022-06-19 问题

    已知1+tanα1-tanα=3,计算:(1)2sinα-3cosα4sinα-9cosα;             (2)2sinαcosα+6cos2α-35-10sin2α-6sinαcosα.

    已知1+tanα1-tanα=3,计算:(1)2sinα-3cosα4sinα-9cosα;             (2)2sinαcosα+6cos2α-35-10sin2α-6sinαcosα.

  • 2022-06-06 问题

    函数y=sin(2x-1)的导数是() A: -3cos(2x-1) B: 3cos(2x-1) C: -cos(2x-1) D: cos(2x-1)

    函数y=sin(2x-1)的导数是() A: -3cos(2x-1) B: 3cos(2x-1) C: -cos(2x-1) D: cos(2x-1)

  • 2022-05-30 问题

    设y=sin(3x-1),则dy=______. A: -cos(3x-1)dx B: cos(3x-1)dx C: -3cos(3x-1)dx D: 3cos(3x-1)dx

    设y=sin(3x-1),则dy=______. A: -cos(3x-1)dx B: cos(3x-1)dx C: -3cos(3x-1)dx D: 3cos(3x-1)dx

  • 2022-06-14 问题

    以下的连续时间信号,哪个不是周期信号 A: cos(2t - π/3)^2 B: f(t) = e^ 2t C: f(t) = 3cos(4t +π/3) D: f(t) = e^ j(tπ-1)

    以下的连续时间信号,哪个不是周期信号 A: cos(2t - π/3)^2 B: f(t) = e^ 2t C: f(t) = 3cos(4t +π/3) D: f(t) = e^ j(tπ-1)

  • 2021-04-14 问题

    <img src="http://edu-image.nosdn.127.net/2507E32A7888F1F05F34CD6088FE894F.png?imageView&thumbnail=890x0&quality=100" />? AC+AB×cosθ1=BC×cosθ3; AB×sinθ1=BC×sinθ3<br >|AC+AB×cosθ1=BC×cosθ3; AB×cosθ1=BCcos×θ3<br >|AB×sinθ1=BC×cosθ3; AC+AB×cosθ1=BC×sinθ3|;AB×cosθ1=BC×cosθ3; AC+AB×sinθ1=BC×sinθ3<br >

    <img src="http://edu-image.nosdn.127.net/2507E32A7888F1F05F34CD6088FE894F.png?imageView&thumbnail=890x0&quality=100" />? AC+AB×cosθ1=BC×cosθ3; AB×sinθ1=BC×sinθ3<br >|AC+AB×cosθ1=BC×cosθ3; AB×cosθ1=BCcos×θ3<br >|AB×sinθ1=BC×cosθ3; AC+AB×cosθ1=BC×sinθ3|;AB×cosθ1=BC×cosθ3; AC+AB×sinθ1=BC×sinθ3<br >

  • 2022-06-16 问题

    已知向量a=(2,2,1),则a的方向余弦为(). A: cosα=2/3,cosβ=2/3,cosγ=1/3 B: cosα=2/5,cosβ=2/5,cosγ=1/5

    已知向量a=(2,2,1),则a的方向余弦为(). A: cosα=2/3,cosβ=2/3,cosγ=1/3 B: cosα=2/5,cosβ=2/5,cosγ=1/5

  • 2022-06-06 问题

    复数12-32i的三角形式是(  ) A: cos(-π3)+isin(-π3) B: cosπ3+isinπ3 C: cosπ3-isinπ3 D: cosπ3+isin5π6

    复数12-32i的三角形式是(  ) A: cos(-π3)+isin(-π3) B: cosπ3+isinπ3 C: cosπ3-isinπ3 D: cosπ3+isin5π6

  • 2022-06-05 问题

    以\( (2,2,1) \)为起点,以\( (1,3,0) \)为终点的向量的方向余弦为( ). A: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = {1 \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) B: \( \cos \alpha = {1 \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) C: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) D: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = {1 \over {\sqrt 3 }} \)

    以\( (2,2,1) \)为起点,以\( (1,3,0) \)为终点的向量的方向余弦为( ). A: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = {1 \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) B: \( \cos \alpha = {1 \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) C: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) D: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = {1 \over {\sqrt 3 }} \)

  • 2022-05-27 问题

    (4)$A$矢量的方向余弦(与三个坐标轴的夹角余弦)的大小是: A: $cos\alpha=3/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ B: $cos\alpha=4/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ C: $cos\alpha=2/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ D: $cos\alpha=3/\sqrt{14},cos\beta=9/\sqrt{14},cos\gamma=3/\sqrt{14}$

    (4)$A$矢量的方向余弦(与三个坐标轴的夹角余弦)的大小是: A: $cos\alpha=3/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ B: $cos\alpha=4/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ C: $cos\alpha=2/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ D: $cos\alpha=3/\sqrt{14},cos\beta=9/\sqrt{14},cos\gamma=3/\sqrt{14}$

  • 2022-07-24 问题

    求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3

    求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3

  • 1 2 3 4 5 6 7 8 9 10