求xf(x2)?f′(x2)dx等于() A: (1/2)f(x2) B: (1/4)f(x2) C: (1/8)f(x2) D: 1/4[f(x2)]2
求xf(x2)?f′(x2)dx等于() A: (1/2)f(x2) B: (1/4)f(x2) C: (1/8)f(x2) D: 1/4[f(x2)]2
分析以下谓词公式的类型。 (1)"xF(x)→$xF(x)。 (2)"x¬F(x)∧$xF(x)。[br][/br] (3)$x(F(x)∧G(x))→"xF(x)。[br][/br] (4)"x(F(y)→G(x))→(F(y)→"xG(x))。
分析以下谓词公式的类型。 (1)"xF(x)→$xF(x)。 (2)"x¬F(x)∧$xF(x)。[br][/br] (3)$x(F(x)∧G(x))→"xF(x)。[br][/br] (4)"x(F(y)→G(x))→(F(y)→"xG(x))。
下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6
设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6
如果f(x)dx=3x+c,那么xf(5-x2)dx等于() A: 3x+c B: f(5-x)+c C: -(1/2)f(5-x)+c D: (3/2)x+c
如果f(x)dx=3x+c,那么xf(5-x2)dx等于() A: 3x+c B: f(5-x)+c C: -(1/2)f(5-x)+c D: (3/2)x+c
若∫f(x)dx=x2+c,则∫xf(1-x2)dx=( ). A: 2(1-x2)2+c B: -2(1-x2)2+c C: -1/2(1-x 2 ) 2 +C D: 1/2(1-x 2 ) 2 +C
若∫f(x)dx=x2+c,则∫xf(1-x2)dx=( ). A: 2(1-x2)2+c B: -2(1-x2)2+c C: -1/2(1-x 2 ) 2 +C D: 1/2(1-x 2 ) 2 +C
若∫f(x)dx=x+C,则∫xf(1-x2)dx=______ A: 2(1-x2)+C B: -2(1-x2)+C C: -1/2(1-x 2 ) 2 +C D: 1/2(1-x 2 ) 2 +C
若∫f(x)dx=x+C,则∫xf(1-x2)dx=______ A: 2(1-x2)+C B: -2(1-x2)+C C: -1/2(1-x 2 ) 2 +C D: 1/2(1-x 2 ) 2 +C
不定积分∫xf″(x)dx等于:() A: xf′(x)-f′(x)+c B: xf′(x)-f(x)+c C: xf′(x)+f′(x)+c D: xf′(x)+f(x)+c
不定积分∫xf″(x)dx等于:() A: xf′(x)-f′(x)+c B: xf′(x)-f(x)+c C: xf′(x)+f′(x)+c D: xf′(x)+f(x)+c
不定积分等于()。 A: xf'(x)-f'(x)+C B: xf'(x)-f(x)+C C: xf'(x)+f'(x)+C D: xf'(x)+f(x)+C
不定积分等于()。 A: xf'(x)-f'(x)+C B: xf'(x)-f(x)+C C: xf'(x)+f'(x)+C D: xf'(x)+f(x)+C
若F(x)为f(x)的一个原函数,则∫xf’(x)dx=______。 A: xF’(x)-f(x)+C B: xF’(x)-F(x)+C C: xf’(x)-F(x)+C D: xf’(x)-f(x)+C
若F(x)为f(x)的一个原函数,则∫xf’(x)dx=______。 A: xF’(x)-f(x)+C B: xF’(x)-F(x)+C C: xf’(x)-F(x)+C D: xf’(x)-f(x)+C