设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在有限区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,但无界,证明[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内也无界.逆命题是否成立?试举例说明.
设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在有限区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,但无界,证明[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内也无界.逆命题是否成立?试举例说明.
已知[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,证明:在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使得[tex=12.071x2.5]lhOWYbmYknHF6g0vXufJkeQWycreDzE752xbw784Z5GSQxpyttPgI2uPcRswpi/ZQSUvQqoIlzrFM5NATEjGxA==[/tex]
已知[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,证明:在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使得[tex=12.071x2.5]lhOWYbmYknHF6g0vXufJkeQWycreDzE752xbw784Z5GSQxpyttPgI2uPcRswpi/ZQSUvQqoIlzrFM5NATEjGxA==[/tex]
9.设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]和[tex=0.5x1.0]wLRBXo571ziKptAIyBBTRQ==[/tex]为区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]上的增函数,证明第7题中定义 的函数[tex=2.071x1.357]Ch2MPHJa7UmcyjPeu+3t8924f+o6wbkwTm3ZOZUb29o=[/tex]和[tex=2.0x1.357]Wnp833ASWh3upFsEQv4YIQ==[/tex]也都是[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]上的增函数。
9.设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]和[tex=0.5x1.0]wLRBXo571ziKptAIyBBTRQ==[/tex]为区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]上的增函数,证明第7题中定义 的函数[tex=2.071x1.357]Ch2MPHJa7UmcyjPeu+3t8924f+o6wbkwTm3ZOZUb29o=[/tex]和[tex=2.0x1.357]Wnp833ASWh3upFsEQv4YIQ==[/tex]也都是[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]上的增函数。
设不恒为常数的函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在闭区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在开区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且[tex=4.286x1.357]xMZp6XSAmZz4c6FFbzWNqg==[/tex],证明:[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使[tex=3.929x1.429]Xat13OcrnAmVJUgSxqIRytg0pR6nx0+Me2baJJkxft0=[/tex].
设不恒为常数的函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在闭区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在开区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且[tex=4.286x1.357]xMZp6XSAmZz4c6FFbzWNqg==[/tex],证明:[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使[tex=3.929x1.429]Xat13OcrnAmVJUgSxqIRytg0pR6nx0+Me2baJJkxft0=[/tex].
下列条件不能使函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上应用拉格朗日中值定理的是 未知类型:{'options': ['[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且在点a处右连续,点b处左连续', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有连续的导数'], 'type': 102}
下列条件不能使函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上应用拉格朗日中值定理的是 未知类型:{'options': ['[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且在点a处右连续,点b处左连续', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有连续的导数'], 'type': 102}
罗尔中值定理中的三个条件:[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]9IaquuY/YHVhZIrXB2rxcA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且[tex=4.286x1.357]xMZp6XSAmZz4c6FFbzWNqg==[/tex],是[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使得[tex=3.357x1.429]Xat13OcrnAmVJUgSxqIRyqywko3yg6FKjhaEIkrYz8M=[/tex]成立的 未知类型:{'options': ['必要条件', '充分条件', '充要条件', '既非充分也非必要条件'], 'type': 102}
罗尔中值定理中的三个条件:[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]9IaquuY/YHVhZIrXB2rxcA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且[tex=4.286x1.357]xMZp6XSAmZz4c6FFbzWNqg==[/tex],是[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使得[tex=3.357x1.429]Xat13OcrnAmVJUgSxqIRyqywko3yg6FKjhaEIkrYz8M=[/tex]成立的 未知类型:{'options': ['必要条件', '充分条件', '充要条件', '既非充分也非必要条件'], 'type': 102}
设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,且[tex=6.0x2.857]NY7oodrirBbiImTnksGISZx2uoFr2YCYnfb4/SQLd3w=[/tex].证明:在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex],使[tex=3.0x1.357]0KA4QVlTfj3/Eecj81UIzw==[/tex].
设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,且[tex=6.0x2.857]NY7oodrirBbiImTnksGISZx2uoFr2YCYnfb4/SQLd3w=[/tex].证明:在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex],使[tex=3.0x1.357]0KA4QVlTfj3/Eecj81UIzw==[/tex].
在区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内,如果[tex=5.214x1.429]U93ae75fuTDIyESpUsh0ZoscgfvDoWUwOn/NgCK0m4s08k0fDhNVPe8DXK2zyFo7[/tex],则一定有 未知类型:{'options': ['[tex=4.643x1.357]fTBXwAknq5uQEBxoj+aqybK3up6oLcvv20tPLm+bT5E=[/tex]', '[tex=6.143x1.357]fTBXwAknq5uQEBxoj+aqyT6eKMgnUnCh5iqrIxDMMoQ=[/tex]', '[tex=12.071x2.857]Nv9nMjzVT2nQSkv3jy2gS1S4BihBndtBTyLV2S3+OuT2amiBpTW4FssuHLt4wDJVKU5WCBoQMo4jzuKg9lU6dzEo7F7LeYTPJEQpIWpgp5Nix6Q/z3Wd0HFgHb1/e8mS[/tex]', '[tex=8.0x2.643]0gcBZOtr6JV+daGpkhOarOUmCntYfdzwOgFrMU0EZMJqfJjV7khM1aC8+to2MLDS[/tex]'], 'type': 102}
在区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内,如果[tex=5.214x1.429]U93ae75fuTDIyESpUsh0ZoscgfvDoWUwOn/NgCK0m4s08k0fDhNVPe8DXK2zyFo7[/tex],则一定有 未知类型:{'options': ['[tex=4.643x1.357]fTBXwAknq5uQEBxoj+aqybK3up6oLcvv20tPLm+bT5E=[/tex]', '[tex=6.143x1.357]fTBXwAknq5uQEBxoj+aqyT6eKMgnUnCh5iqrIxDMMoQ=[/tex]', '[tex=12.071x2.857]Nv9nMjzVT2nQSkv3jy2gS1S4BihBndtBTyLV2S3+OuT2amiBpTW4FssuHLt4wDJVKU5WCBoQMo4jzuKg9lU6dzEo7F7LeYTPJEQpIWpgp5Nix6Q/z3Wd0HFgHb1/e8mS[/tex]', '[tex=8.0x2.643]0gcBZOtr6JV+daGpkhOarOUmCntYfdzwOgFrMU0EZMJqfJjV7khM1aC8+to2MLDS[/tex]'], 'type': 102}
若在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]可导,且[tex=4.071x1.429]U93ae75fuTDIyESpUsh0ZmAMIxCaRnAEUmXXp9cwR8g=[/tex],且[tex=5.643x1.357]w5iiPSI0WY83EY7RJGqdTSmY/K+P48ZZ5M17QwJn8Zo=[/tex],证明:方程[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有唯一实根
若在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]可导,且[tex=4.071x1.429]U93ae75fuTDIyESpUsh0ZmAMIxCaRnAEUmXXp9cwR8g=[/tex],且[tex=5.643x1.357]w5iiPSI0WY83EY7RJGqdTSmY/K+P48ZZ5M17QwJn8Zo=[/tex],证明:方程[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有唯一实根
设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]与[tex=1.857x1.357]onZXu4LK1qWqnNzYw8C+9Q==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可微,[tex=3.714x1.357]DhPK/180RCH4ilSrWh2+C5cTIAJ117EsGiVLSfX+LNo=[/tex],且[tex=12.357x3.357]1xLK2S2fjz/DkWdie5OKhcUmfzOSabnbLcG9NV15mLsTPVOJDHQreXlAHZQuZS61kPFwCMXUdC4vSTKtCmJq3x5BIGukFyQXs3o838cvTGyy9WaDRTNuExNE2IjRtXiA7ypopdWvdhjOEbKZiH0uSQ==[/tex].证明:存在常数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex],使[tex=8.857x1.357]86MEZndL7guhFjpZIwNGHSKDQj/99kXMGMocmYEUN5c=[/tex].
设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]与[tex=1.857x1.357]onZXu4LK1qWqnNzYw8C+9Q==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可微,[tex=3.714x1.357]DhPK/180RCH4ilSrWh2+C5cTIAJ117EsGiVLSfX+LNo=[/tex],且[tex=12.357x3.357]1xLK2S2fjz/DkWdie5OKhcUmfzOSabnbLcG9NV15mLsTPVOJDHQreXlAHZQuZS61kPFwCMXUdC4vSTKtCmJq3x5BIGukFyQXs3o838cvTGyy9WaDRTNuExNE2IjRtXiA7ypopdWvdhjOEbKZiH0uSQ==[/tex].证明:存在常数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex],使[tex=8.857x1.357]86MEZndL7guhFjpZIwNGHSKDQj/99kXMGMocmYEUN5c=[/tex].