未知类型:{'options': ['[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上可导', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且在点a处右连续,点b处左连续', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有连续的导数'], 'type': 102}
举一反三
- 若在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]可导,且[tex=4.071x1.429]U93ae75fuTDIyESpUsh0ZmAMIxCaRnAEUmXXp9cwR8g=[/tex],且[tex=5.643x1.357]w5iiPSI0WY83EY7RJGqdTSmY/K+P48ZZ5M17QwJn8Zo=[/tex],证明:方程[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内有唯一实根
- 设不恒为常数的函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在闭区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在开区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且[tex=4.286x1.357]xMZp6XSAmZz4c6FFbzWNqg==[/tex],证明:[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使[tex=3.929x1.429]Xat13OcrnAmVJUgSxqIRytg0pR6nx0+Me2baJJkxft0=[/tex].
- 设[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,[tex=7.286x2.643]oxDXl0UCdk45SxwvXU/+/v7jS0dadtRDxjvrGXsY6EUoSogGuQxU8B5Fa6Ln1UsC[/tex],则有 未知类型:{'options': ['[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]是[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上的一个原函数', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]是[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上的一个原函数', '[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]是[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上唯一的原函数', '[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]是[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上唯一的原函数'], 'type': 102}
- 罗尔中值定理中的三个条件:[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]9IaquuY/YHVhZIrXB2rxcA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,且[tex=4.286x1.357]xMZp6XSAmZz4c6FFbzWNqg==[/tex],是[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使得[tex=3.357x1.429]Xat13OcrnAmVJUgSxqIRyqywko3yg6FKjhaEIkrYz8M=[/tex]成立的 未知类型:{'options': ['必要条件', '充分条件', '充要条件', '既非充分也非必要条件'], 'type': 102}
- 设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,且[tex=6.0x2.857]NY7oodrirBbiImTnksGISZx2uoFr2YCYnfb4/SQLd3w=[/tex].证明:在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex],使[tex=3.0x1.357]0KA4QVlTfj3/Eecj81UIzw==[/tex].
内容
- 0
已知[tex=2.0x1.357]NPUHTDidDwic6oV5lKQS1A==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,证明:在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.5x1.214]cXT0lwxXaA5/A8r4U+6hNw==[/tex],使得[tex=12.071x2.5]lhOWYbmYknHF6g0vXufJkeQWycreDzE752xbw784Z5GSQxpyttPgI2uPcRswpi/ZQSUvQqoIlzrFM5NATEjGxA==[/tex]
- 1
设[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在区间[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续,则函数[tex=7.286x2.643]oxDXl0UCdk45SxwvXU/+/v7jS0dadtRDxjvrGXsY6EUoSogGuQxU8B5Fa6Ln1UsC[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上连续.
- 2
设函数[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在有限区间[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内可导,但无界,证明[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex]在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内也无界.逆命题是否成立?试举例说明.
- 3
证明:当[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上处处存在且有界时,[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]是在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上绝对连续的.
- 4
设[tex=1.857x1.357]Fuvm9Mwml7lIOgc0vriwJw==[/tex]在[tex=2.0x1.357]Az4ohoomfEMh5o8uh4mLdA==[/tex]上有二阶导数,且[tex=5.571x1.357]cRc5wwK9uNQf7jD/CFA6Qy8b+wQ+nVQwOXRNsr8oX1M=[/tex],又存在[tex=3.286x1.357]VxFWbZ8BTD5bADc9z8Y5XJdM38TZnkYoD7KA8ovzpeQ=[/tex]使[tex=3.571x1.357]mfamdUlkeNsEs1cZVWx/NA==[/tex].证明:在[tex=2.214x1.357]wIEaXlEuEf8SQpjP/4JuQw==[/tex]内至少存在一点[tex=0.929x1.0]tstbm1OuPyfyNcfVXQkZzA==[/tex]使[tex=4.786x1.429]o1NxfHFvh4pfuP8b7Vf/BGBk5U/OfUvDTtiYiGZF8+j0FRVqvWjPMOuRxhmgew6z[/tex].