已知α1=(1,2,-1)T,α2=(1,-3,2)T,α3=(4,11,-6)T,若Aα1=(0,2)T,Aα2=(5,2)T,Aα3=(-3,7)T,则A=______。
已知α1=(1,2,-1)T,α2=(1,-3,2)T,α3=(4,11,-6)T,若Aα1=(0,2)T,Aα2=(5,2)T,Aα3=(-3,7)T,则A=______。
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
设α1=(1,4,3,-1)T,α2=(2,t,-1,-1)T,α3=(-2,3,1,t+1)T,则 A: 对任意的t,α1,α2,α3必线性无关. B: 仅当t=-3时,α1,α2,α3线性无关. C: 若t=0,则α1,α2,α3线性相关. D: 仅t≠0且t≠-3,α1,α2,α3线性无关.
下面代码的输出结果是( )。 t=[1,2,3] s=tuple(t) print(t,s) A: [1, 2, 3] [1, 2, 3] B: (1, 2, 3) (1, 2, 4) C: [1, 2, 3] (1, 2, 3) D: (1, 2, 6)[1, 2, 3]
下面代码的输出结果是( )。 t=[1,2,3] s=tuple(t) print(t,s) A: [1, 2, 3] [1, 2, 3] B: (1, 2, 3) (1, 2, 4) C: [1, 2, 3] (1, 2, 3) D: (1, 2, 6)[1, 2, 3]
已知α1=(1,0,1)T,α2=(0,4,-1)T,α3=(-1,2,0)T,且Aα1=(2,1,1)T,Aα2=(-3,0,4)T,Aα3=(1,-1,1)T,则A=______.
已知α1=(1,0,1)T,α2=(0,4,-1)T,α3=(-1,2,0)T,且Aα1=(2,1,1)T,Aα2=(-3,0,4)T,Aα3=(1,-1,1)T,则A=______.
设向量组Αα1=(1,2,1,3)T,α2=(4,-1,-5,-6)T,2)T向量组B:β1=(-1,3,4,7)T,β2=(2,-1,-3,-4)T,试证明;
设向量组Αα1=(1,2,1,3)T,α2=(4,-1,-5,-6)T,2)T向量组B:β1=(-1,3,4,7)T,β2=(2,-1,-3,-4)T,试证明;
设α1=(1,3,4,-2)T,α2=(2,1,3,t)T,α3=(3,-1,2,0)T线性相关,则t=() A: 1 B: -1 C: 2 D: -2
设α1=(1,3,4,-2)T,α2=(2,1,3,t)T,α3=(3,-1,2,0)T线性相关,则t=() A: 1 B: -1 C: 2 D: -2
设向量a1=(1 1 2)T,a2=(2 t 4)T,a3=(t 3 6)T,a4=(0 2 2t)T。若向量组{a1,a2,a3,a4}的秩是3,矩阵A=(a1 a2 a3)的秩是2,则参数t=()。 A: 2 B: 3 C: 4 D: 6
设向量a1=(1 1 2)T,a2=(2 t 4)T,a3=(t 3 6)T,a4=(0 2 2t)T。若向量组{a1,a2,a3,a4}的秩是3,矩阵A=(a1 a2 a3)的秩是2,则参数t=()。 A: 2 B: 3 C: 4 D: 6
设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)
已知α1=(1,1,-1)T,α2=(1,1,2)T,满足α1,α2,α3线性相关的向量α3=()。 A: (-1,1,0)T B: (3,-3,5)T C: (-1,0,0)T D: (0,0,3)T
已知α1=(1,1,-1)T,α2=(1,1,2)T,满足α1,α2,α3线性相关的向量α3=()。 A: (-1,1,0)T B: (3,-3,5)T C: (-1,0,0)T D: (0,0,3)T