判断CHAR型变量C1是否为大写字母的表达式是( )。 A: 'A'<=C1<='Z' B: C1>='A'&C1<='Z' C: 'A'<=C1&&C1>='Z' D: 'A'<=C1 AND C1>='Z'
判断CHAR型变量C1是否为大写字母的表达式是( )。 A: 'A'<=C1<='Z' B: C1>='A'&C1<='Z' C: 'A'<=C1&&C1>='Z' D: 'A'<=C1 AND C1>='Z'
\(A\)同上题,将其对角化\(A=S\Lambda S^{-1}\)的方阵\(S\)可以是 A: \(\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}\)
\(A\)同上题,将其对角化\(A=S\Lambda S^{-1}\)的方阵\(S\)可以是 A: \(\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}\)
下列哪个矩阵的列空间,行空间,零空间,左零空间维数之和最大? A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\) D: \(\begin{pmatrix} 1 & 2 & 9 \\ 9 & 1 & 8 \\ 1 & 0 & 1 \end{pmatrix}\)
下列哪个矩阵的列空间,行空间,零空间,左零空间维数之和最大? A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\) D: \(\begin{pmatrix} 1 & 2 & 9 \\ 9 & 1 & 8 \\ 1 & 0 & 1 \end{pmatrix}\)
下列哪个矩阵的列空间是和其他三个矩阵的列空间不同的 A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}\) D: \(\begin{pmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}\)
下列哪个矩阵的列空间是和其他三个矩阵的列空间不同的 A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}\) D: \(\begin{pmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}\)
设A为3阶矩阵,将A的第二列加到第一列得到矩阵B,再交换B的第二行和第三行得单位矩阵,则矩阵A为( ) A: \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} B: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\-1 & 1 & 0 \end{bmatrix} C: \begin{bmatrix} -1 &1 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} D: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix}
设A为3阶矩阵,将A的第二列加到第一列得到矩阵B,再交换B的第二行和第三行得单位矩阵,则矩阵A为( ) A: \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} B: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\-1 & 1 & 0 \end{bmatrix} C: \begin{bmatrix} -1 &1 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix} D: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\-1 & 1 & 0 \end{bmatrix}
设3阶实对称矩阵\( A \)的秩为2,且\( {A^2} - A = O \) ,则\( A \)相似于( ) A: \( \left( {\matrix{ 1 & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & {} & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \) C: \( \left( {\matrix{ { - 1} & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 1 & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \)
设3阶实对称矩阵\( A \)的秩为2,且\( {A^2} - A = O \) ,则\( A \)相似于( ) A: \( \left( {\matrix{ 1 & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & {} & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \) C: \( \left( {\matrix{ { - 1} & {} & {} \cr {} & { - 1} & {} \cr {} & {} & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 1 & {} \cr {} & 1 & {} \cr {} & {} & 0 \cr } } \right) \)
下列矩阵中,不是初等矩阵的是( ) A: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & { - 3} & 0 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 1 & 3 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 0 & 3 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
下列矩阵中,不是初等矩阵的是( ) A: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) B: \( \left( {\matrix{ 1 & 0 & 0 \cr 0 & { - 3} & 0 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 1 & 3 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right) \) D: \( \left( {\matrix{ 1 & 0 & 3 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
设\(E\)是初等阵,表示第3行减去第1行的7倍,则\(E^{-1}=\) A: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & -7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)
设\(E\)是初等阵,表示第3行减去第1行的7倍,则\(E^{-1}=\) A: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & -7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)
设\( A \)为三阶方阵,将\( A \)的第1列与第2列交换得\( B \),再把\( B \) 的第2列加到第3列得\( C \),则满足\( AQ = C \)的可逆阵\( Q \)为( ) A: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 1 & 0 & 1 \cr } } \right) \) B: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 1 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 1 & 1 \cr } } \right) \) D: \( \left( {\matrix{ 0 & 1 & 1 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
设\( A \)为三阶方阵,将\( A \)的第1列与第2列交换得\( B \),再把\( B \) 的第2列加到第3列得\( C \),则满足\( AQ = C \)的可逆阵\( Q \)为( ) A: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 1 & 0 & 1 \cr } } \right) \) B: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 1 \cr 0 & 0 & 1 \cr } } \right) \) C: \( \left( {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 1 & 1 \cr } } \right) \) D: \( \left( {\matrix{ 0 & 1 & 1 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right) \)
以下选项中,当且仅当x的绝对值在1至6范围内表达式值为“真”的是 A: (x>=-6)&&(x<=-1)||(x>=1)&&(x<=6) B: (x>=1)&&(x<=6)&&(x>=-6)&&(x<=-1) C: (x>=-6)||(x<=-1)||(x>=1)||(x<=6) D: (x>=1)&&(x<=6)||(x>=-1)&&(x<=-6)
以下选项中,当且仅当x的绝对值在1至6范围内表达式值为“真”的是 A: (x>=-6)&&(x<=-1)||(x>=1)&&(x<=6) B: (x>=1)&&(x<=6)&&(x>=-6)&&(x<=-1) C: (x>=-6)||(x<=-1)||(x>=1)||(x<=6) D: (x>=1)&&(x<=6)||(x>=-1)&&(x<=-6)