以下变换$\cal{A}$是线性变换的有( )。 A: $R^{3}$上变换:$\cal{A}(x_{1},x_{2},x_{3})=(x_{1},x_{3},x_{2}+1)$ B: $R^{3}$上变换:$\cal{A}(x_{1},x_{2},x_{3})=(\mid x_{1}\mid ,x_{3},x_{2})$ C: $R[x]$上变换:$\cal{A}(f(x))=f(x+3)$ D: $R[x]$上变换:$\cal{A}(f(x))=f(x+1)-f(x)$
以下变换$\cal{A}$是线性变换的有( )。 A: $R^{3}$上变换:$\cal{A}(x_{1},x_{2},x_{3})=(x_{1},x_{3},x_{2}+1)$ B: $R^{3}$上变换:$\cal{A}(x_{1},x_{2},x_{3})=(\mid x_{1}\mid ,x_{3},x_{2})$ C: $R[x]$上变换:$\cal{A}(f(x))=f(x+3)$ D: $R[x]$上变换:$\cal{A}(f(x))=f(x+1)-f(x)$
以下集合对于所指的线性运算构成实数域上线性空间的有 ( )。 A: $R^{2}$上定义加法,数乘如下:$$(x_{1},x_{2})+(y_{1},y_{2})=(x_{1}+y_{1},0),k(x,y)=(kx,0)$$ B: $R^{2}$上定义加法,数乘如下:$$(x_{1},x_{2})+(y_{1},y_{2})=(x_{1}+y_{1},x_{2}),k(x,y)=(kx,y)$$ C: 平面上不平行于$X$ 轴的向量全体,关于向量的加法与数量乘法 D: $R^{2}$上定义加法,数乘如下:$$(x_{1},x_{2})+(y_{1},y_{2})=(x_{1}+y_{1},x_{2}+y_{2}+x_{1}y_{1})),$$$$k(x,y)=(kx,ky+\frac{k(k-1)}{2}x^{2})$$
以下集合对于所指的线性运算构成实数域上线性空间的有 ( )。 A: $R^{2}$上定义加法,数乘如下:$$(x_{1},x_{2})+(y_{1},y_{2})=(x_{1}+y_{1},0),k(x,y)=(kx,0)$$ B: $R^{2}$上定义加法,数乘如下:$$(x_{1},x_{2})+(y_{1},y_{2})=(x_{1}+y_{1},x_{2}),k(x,y)=(kx,y)$$ C: 平面上不平行于$X$ 轴的向量全体,关于向量的加法与数量乘法 D: $R^{2}$上定义加法,数乘如下:$$(x_{1},x_{2})+(y_{1},y_{2})=(x_{1}+y_{1},x_{2}+y_{2}+x_{1}y_{1})),$$$$k(x,y)=(kx,ky+\frac{k(k-1)}{2}x^{2})$$
下面二次型中正定的是( )。 A: $f(x_{1},x_{2},x_{3})=x_{1}^{2}+x_{2}^{2}$; B: $f(x_{1},x_{2},x_{3})=x_{1}^{2}+x_{2}^{2}+2x_{1}x_{2}+6x_{3}^{2}$; C: $f(x_{1},x_{2},x_{3})=4x_{1}^{2}+3x_{2}^{2}+6x_{3}^{2}-x_{1}x_{2}-x_{1}x_{3}$; D: $f(x_{1},x_{2},x_{3})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2x_{1}x_{2}+2x_{1}x_{3}+2x_{2}x_{3}$.
下面二次型中正定的是( )。 A: $f(x_{1},x_{2},x_{3})=x_{1}^{2}+x_{2}^{2}$; B: $f(x_{1},x_{2},x_{3})=x_{1}^{2}+x_{2}^{2}+2x_{1}x_{2}+6x_{3}^{2}$; C: $f(x_{1},x_{2},x_{3})=4x_{1}^{2}+3x_{2}^{2}+6x_{3}^{2}-x_{1}x_{2}-x_{1}x_{3}$; D: $f(x_{1},x_{2},x_{3})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2x_{1}x_{2}+2x_{1}x_{3}+2x_{2}x_{3}$.
对线性空间$R^{2}$中以下函数$f$,不是线性函数的有 ( ). A: $f(x_{1},x_{2})=4x_{1}+x_{2}log_{3}8$ B: $f(x_{1},x_{2})=x_{1}+4x_{2}+4$ C: $f(x_{1},x_{2})=x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}$ D: $f(x_{1},x_{2})=sin (x_{1})+cos( x_{2})$
对线性空间$R^{2}$中以下函数$f$,不是线性函数的有 ( ). A: $f(x_{1},x_{2})=4x_{1}+x_{2}log_{3}8$ B: $f(x_{1},x_{2})=x_{1}+4x_{2}+4$ C: $f(x_{1},x_{2})=x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}$ D: $f(x_{1},x_{2})=sin (x_{1})+cos( x_{2})$
设总体X~N($\mu,{\sigma}^2$),$\mu,{\sigma}^2$未知,$x_{1},x_{2},...,x_{n} $ 是来自该总体的样本,记$\overline x=\frac{1}{n}\sum\limits_{i = 1}^{n}{x_{i}}$,则对假设检验$ H_{0}:u=u_{0},H_{1}:u!=u_{0}$的拒绝域为()
设总体X~N($\mu,{\sigma}^2$),$\mu,{\sigma}^2$未知,$x_{1},x_{2},...,x_{n} $ 是来自该总体的样本,记$\overline x=\frac{1}{n}\sum\limits_{i = 1}^{n}{x_{i}}$,则对假设检验$ H_{0}:u=u_{0},H_{1}:u!=u_{0}$的拒绝域为()
有如下类定义: class Point { int x_,y_; public: Point():x_(0),y_(0){ } Point(int x,int y=0):x_(x),y_(y){} }; 若执行语句 Point a(2),b[3],*c[4]; 则Point类的构造函数被调用的次数是
有如下类定义: class Point { int x_,y_; public: Point():x_(0),y_(0){ } Point(int x,int y=0):x_(x),y_(y){} }; 若执行语句 Point a(2),b[3],*c[4]; 则Point类的构造函数被调用的次数是
为求方程${x^3} - {x^2} - 1 = 0$在${x_0} = 1.5$附近的一个根,以下迭代格式收敛的是: A: ${x_{k + 1}} = 1 + {1 \over {x_k^2}}$ B: ${x_{k + 1}} = 1 - {1 \over {x_k^2}}$ C: ${x_{k + 1}} = \root 3 \of {x_k^2 - 1} $ D: ${x_{k + 1}} = {1 \over {\sqrt {{x_k} - 1} }}$
为求方程${x^3} - {x^2} - 1 = 0$在${x_0} = 1.5$附近的一个根,以下迭代格式收敛的是: A: ${x_{k + 1}} = 1 + {1 \over {x_k^2}}$ B: ${x_{k + 1}} = 1 - {1 \over {x_k^2}}$ C: ${x_{k + 1}} = \root 3 \of {x_k^2 - 1} $ D: ${x_{k + 1}} = {1 \over {\sqrt {{x_k} - 1} }}$
G90 G01 X_ Z_ F_;其中X、Z的值是表示
G90 G01 X_ Z_ F_;其中X、Z的值是表示
In $G(x)=a_0+a_1 x_ +a_2 x^2+..+a_n x^n+⋯$, generating function is concerned of: A: Variable x B: Target function G(x) C: Coefficient ai
In $G(x)=a_0+a_1 x_ +a_2 x^2+..+a_n x^n+⋯$, generating function is concerned of: A: Variable x B: Target function G(x) C: Coefficient ai
有如下类定义:class Point{ int x_,y_; public: Point():x_(0),y_(0){} Point(int x,int y=0) : x_(x),y_(y){} };若执行语句Point a(2),b[3],*c[4];则Point类的构造函数被调用的次数是____。 A: 2次 B: 3次 C: 4次 D: 5次
有如下类定义:class Point{ int x_,y_; public: Point():x_(0),y_(0){} Point(int x,int y=0) : x_(x),y_(y){} };若执行语句Point a(2),b[3],*c[4];则Point类的构造函数被调用的次数是____。 A: 2次 B: 3次 C: 4次 D: 5次