设 [tex=1.786x1.357]KHLfIZxefVPW9ckCG2I71w==[/tex] 是向量范数, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为 [tex=2.429x1.071]fYRl1cpBZV0k8ULAvI7FIg==[/tex] 实矩阵[tex=1.071x1.0]Mrd+XDZMGn61k8+5smQuVg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量, 证明 [tex=2.357x1.357]9/T8ZvbuzbBRSSiethdf2Q==[/tex] 是 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 的连续函数.
举一反三
- 求证: [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是奇异矩阵的充要条件是存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维非零列向量 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex], 使 [tex=2.643x1.0]Luk4dywqmDJgAqza1pE8oQ==[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,且[tex=3.143x1.357]UJPO4W988N9GD+L2qw/VKw==[/tex],证明:存在实[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex],使[tex=4.571x1.214]0/KaLJMUhPX6ftFvgZrv+0XmVzxZcEeSyap5HbYe7CM=[/tex]。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵,证明:若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是对称矩阵,且对任一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量 [tex=1.143x1.214]v57PrtvcRANvjTjSZkCHmQ==[/tex]有 [tex=4.5x1.429]15pNkwSKAI/4xStQz3DLfw==[/tex]那么 [tex=2.571x1.0]WPtNkIUX8epXX87iaYQs6w==[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶方阵,证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是反对称矩阵,当且仅当对任一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量 [tex=1.143x1.214]v57PrtvcRANvjTjSZkCHmQ==[/tex] 有[tex=4.5x1.214]7kFxBTR/JmxkA2BxZVmmrA==[/tex]