举一反三
- 无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 如图 18.4所示.(1) 给出 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的一个非最大匹配的极大匹配 [tex=1.357x1.214]QcSZflolD/TZzu4WluEs9g==[/tex].(2) 求(1) 中给出的 [tex=1.357x1.214]QcSZflolD/TZzu4WluEs9g==[/tex] 的一条可增广的交错路径 [tex=0.643x1.0]MEgqm6iWtfwwGGtWVl2Eng==[/tex].(3) 由(2)中给出的 [tex=0.643x1.0]MEgqm6iWtfwwGGtWVl2Eng==[/tex] 产生一个边数更多的匹配 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex].(4) [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中存在完美匹配吗? 为什么?[br][/br][img=256x175]179281f4e015d48.png[/img]
- 设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 在 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 下的象是 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的子空间.
- 设[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间,且 [tex=6.571x1.071]ZyqBa4JfWRPKusGwA3PAKqa8sjPrakad+dZGuQBTVus=[/tex].证明:[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中有不止一个余子空间。
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵组成的线性空间, 令 [tex=14.071x1.357]526RfeuoVuYFKMeevCzg3ALQwrIMoLSjnd4jNqAgq3b0SbOJw1J3W132MAq3sEvgFgMY+RJMUHzLRJJVfTrs8Q==[/tex] 是第 [tex=1.857x1.357]DPfV/kz2+j7DkAnudNw66w==[/tex] 元素为 1 、其余元素为 0 的 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, 求证: 全体 [tex=1.286x1.286]TpiThXZs62EvtJGFwo2zsw==[/tex] 组成了 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基, 因而 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=1.5x0.786]uDlrM/k6mXUKzRmRUTQRAw==[/tex] 维线性空间.
- 设[tex=4.429x1.214]wdHwRVgwC7JparTaLH/Q2vH/V2im91ju8tzz2wt+Roc=[/tex]是向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]到[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]的一个同构映射,[tex=1.0x1.214]Gyk9oZZNuuqd3a3TjbH+bQ==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间。证明[tex=2.429x1.357]YrkV0/qOeegIRB3IehV7HgVgW3nV/pANLcX/DE49WN8=[/tex]是[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]的一个子空间。
内容
- 0
令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。
- 1
设[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维欧氏空间,证明:(i) 如果[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间,那么 [tex=5.071x1.786]XY56GNRACVe6b2qd75bdLbEoOuqFoEbnmfTH9irME46lJ6iwlS1YWvk4vDNGYHBI[/tex].(ii) 如果[tex=1.357x1.214]GKMenh0m+y3HeiRY6A5A1w==[/tex],[tex=1.357x1.214]ztgeeoEuax7xCxL39pAmeA==[/tex] 都是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的子空间,且[tex=3.929x1.214]mpMQ4Ru5iSHdEe8yWA+LnWVXOqkUqWcmSai3+gNB1u8=[/tex],那么 [tex=4.714x1.5]mrXs+eTyKg7VSoADvWalB+kQwoBZHeA+tzspi3E5EsvhWlx5xmUKG2weRdhKfJai[/tex]。(iii) 如果[tex=1.357x1.214]GKMenh0m+y3HeiRY6A5A1w==[/tex],[tex=1.357x1.214]ztgeeoEuax7xCxL39pAmeA==[/tex]都是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的子空间,那么 [tex=10.5x2.0]Ld8gFueB3cMfdhC3+TJi4YFbblYbGe5K+i0mxbGikXnY/TVGGjA38UTtHqpIwitd1OT/xbMJzLN5uSQyv2lyPVKL0T1K+Y7QTu2lcwERL2M=[/tex]。
- 2
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上有限维线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个线性映射. 证明: 存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的由个基和 [tex=1.071x1.143]SEwIem1RXUAaU4aCzKG5tQ==[/tex] 的一个基, 使得 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这一对基下的矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 形如 [tex=5.214x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAqVscNdEHQ2gVv3HlIwyzLR+CcPnB5qDwlqwJNgLQJPHg==[/tex]
- 3
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一个线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证明: 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的幂等变换, 则 [tex=7.429x1.214]9EEqBINFlBjBDctgmBR710iQzzjdHLq0qFl5D2J7LoJfKUhIUE/hne1q9q9IngGOMdMLoA+ggeiu2E4r1hRMtA==[/tex] 并且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是平行于 [tex=2.571x1.0]7sm0+A17+tx/lVOuO5S85JZirYSY+u4Jmoo206BMmy8=[/tex] 在 [tex=2.143x1.0]Hxr+WAd0pdX8wRxoSXYGR4QAnDyuqv4xTysdYL2/0eA=[/tex] 上的投影.
- 4
设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 的核[p=align:center][tex=10.929x1.357]79Wd/JsaQKi3RBB3vwr83++T1RL7xHRl7h6/jYuyZNiKMy7xkr4ORGAMG33OkkToJExhkKLj0aUodV2n06JAE4PzxkAVaRTbEfGx9kYZZBg=[/tex]是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的子空间.