举一反三
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵全体组成的线性空间;
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶反对称矩阵全体组成的线性空间.
- 设[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]是数域上的线性空间,证明[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]有一组基.
- 设 [tex=5.357x1.0]7pNelk4HUVBg38zOC/iSU7vMHJrVLgwqvpr1rK1NbFKaEiEule+x7zsTPLTAhCyvaZvwEOnFcKaPMr3tKaDZBA==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 4 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一个基, [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这个基下的矩阵为 [tex=9.5x4.5]r+tiAx6ClSaeP7cZbqpjmfK7O8r/htd1QXcUP+123Y3A6ectjTrAKD+R6YhjQBAKJ/y/MG0HupMmkFv14OfaK+wFCeIkssszMaxkxbDFg7WtoVrOKql6pmFkMzpTZ2jrsFrIUYHHTrFKkFbPUXaV/JTbMMpdsZX0G3vVda9cn48=[/tex]求 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一个基, 使得 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 在这个基下的矩阵为对角矩阵, 并且写出这个对角矩阵.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上一个线性空间. 证明: 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的任一子空间都是某些线性函数的零化子空间.
内容
- 0
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是实数域上连续函数全体构成的实线性空间, 求证下列函数线性无关:(1) [tex=10.0x1.214]owlIZSkaaVyD56TX0aU6T5coc+O9ohQlAuuKvYXA4AwNcaRf+OGEEvyl7oF/rJCp[/tex];(2) [tex=11.643x1.214]0hPVnwQ5GNDHffP2A8hk2jtiKKzdepIYmrE9NOzYccJa62RuXUkd06ngcqomBwJR[/tex](3) [tex=20.143x1.214]Sx5L/ZF55Y/cJTSfhmgKUOw6VEOXFRqglwmRTz9oJltKgVT/9ukFFfF7w23eOFtPpSaPROEzlNtUC6j4EU33pnOIjI4E7IKgym85G3M1Lg8=[/tex]
- 1
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是由数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上次数小于 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 的多项式全体构成的线性空间, [tex=7.214x1.357]AHK0WmE4lcixgH0tc9s+mmI4d6DJOsshX3wlPRZpFGg=[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 中互不相同的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个数, [tex=22.571x1.357]gCwF3zUatVwRc+eUWlMowxwihDYdl81R02FLSVpDcDzUTpECxdwTxdpNHIuxF1ZAnSyUZpCAA1xQPoE5qwv4tR0KS5j98eGEnrVvonLaWlb9o9hXT5FYGv/3Stbjk06amjHQlZQ3OS2DVAym8ohIconBaJrFF9Xk0y4BfZPD6qU=[/tex], 求证: [tex=9.5x1.357]AR04WuoZjDqodbAhlXwMYLwi5m6oTT7YbZCawFsWRWGnv6mXiIsownhOrshh46bt[/tex] 组成 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基.
- 2
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上所有交错型组成的线性空间的维数为[input=type:blank,size:6][/input]
- 3
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=2.929x1.357]eNe4MLnVkbXNSGDW9QMzng==[/tex] 中所有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 次齐次多项式组成的集合, 它对于多项式的加法, 以及数与 多项式的乘法成为数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的一个线性空间. 给定数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上的一个 2 级矩阵 [tex=4.0x1.357]n9szCAW9NR93NzdWHX2+SIQ0GT4Z8F6rBFH2My+/Q0k=[/tex] 定义 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到自身的一个映射 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 如下: [tex=17.214x1.571]OOrxAXSMYCYUc5u06APP1HKDby6i7DnfukgrWzxCU1A3gxziBGBdJDm8pslpS7CN7j1FvLYcmwQLX8b0QTEYVVwC0AZhgDmdhawaXEX7EktcQufvMgLLcMrobRFV/OSI[/tex] 判断 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是不是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换.
- 4
求复数域上线性空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的线性变换[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的特征值与特征向量, 设[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一个基下的矩阵是:[tex=6.214x2.786]3BT1BgBZQ5uJXxD5dg+w29wlCih+1lhpjAuwkpfyi8StndXPsLnn4tlIVuXhjahBrIGFeDZN131CPy4AyBjcEA==[/tex].