从一个装有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个白球、 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个黑球的袋子中返回地摸球,直到摸到白球时停止. 试求取到黑球数的期望.
举一反三
- 从一个装有[tex=0.857x1.286]VtHyCG+ZQg7fAIyRU+W9ow==[/tex]个白球、[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个黑球的袋子中返回地摸球,知道摸到白球时停止 . 试求取到黑球数的期望 .
- 十个口袋中装有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个白球、 [tex=2.286x1.071]OeUcp+s39kjSaHDKbfv7Dw==[/tex]个黑球,不返回地连续从袋中取球,直到取出黑球时停止。设此时取出了[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]个白球,求 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布列。
- 口袋中 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 个白球, [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 个黑球和 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个红球,现从中一个一个不返回地取球. 试证白球比黑球出现得早的 概率为 [tex=3.571x1.357]rC4jCu84NpROucXpRq3ExQ==[/tex], 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 无关.
- 口袋中有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个黑球和[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]个白球,从其中一次次地取球,每次任取一个,取后不放回,若前[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]次已取出 [tex=3.786x1.357]1SvMqpRzQ2p7bkhLnLtjhA==[/tex]个黑球和[tex=3.857x1.357]iaCUHHG/Q4eunJPCiul1+g==[/tex]个白球,[tex=4.0x1.143]VOwmzup/S3iXGhBfzAkUkQ==[/tex],求第[tex=1.786x1.143]0I+mivUTc61+gHYMZ4P6UA==[/tex]次取得白球的概率.
- 口袋中有 1 个白球,1 个黑球. 从中任取 1 个,若取出白球,则试验停止;若取出黑球,则把取出的 黑球放回的同时,再加入 1 个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次,试验没有结束;(2)取到第 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次,试验恰好结束.