设向量b可由a1,a2,a3,...,ar线性表出,但不能由a1,a2,a3,..,ar-1线性表出
举一反三
- 设向量组a1,a2,a3的r(a1,a2,a3)=3,a4能由a1,a2,a3线性表示,a5不能由a1,a2,a3线性表示,则r(a1-a2,a2,a3-a1,a5-a4)= 。 A: 1 B: 2 C: 3 D: 4
- 已知A1,A2,A3,...,Ar线性无关,b与A1,A2,A3,...,Ar都正交,证明b,A1,A2,A3,...,Ar线性无关.
- 设a可由a1,a2,a3线性表示,但a不能由a2,a3线性表示,证:a1可由a,a2,a3线性表示
- 设向量β可由向量组α1,α2,…,αs线性表出,但β不能由向量组α1,α2,…,αs-1线性表出.证明:秩(α1,α2,…,αs-1,αs)=秩(α1,α2,…,αs-1,β).
- 已知R(A1,A2,A3)=2,R(A2,A3,A4)=3证明:A1能由A2,A3线性表示;A4不能由A1,A2,A3线性表示