举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex], 则 [tex=9.714x1.429]YEB+XWrIlL0FhJofV4x7Y88kjtYWQ/8Nf3OrSdZ5LNjoHhtu70p6mabGVjlb+X7j[/tex]在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内有解
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex],证明存在[tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex], 使[tex=7.786x1.429]Xat13OcrnAmVJUgSxqIRyuLkSaISCueYDX9c/JVF1Ja/ApOxvWSDNwBO15h+lr9j[/tex]。
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,证明:在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使[tex=11.429x2.5]WOqEVrpuCOha2ZBQjNNPrAVxQjjfA1h4tb1zjguDu2gGIMJX1FDyEvF1edf6o7UBVNxanJs2u11gkxisMYf5sA==[/tex].
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在区间[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内有定义且连续.在怎样的情况下,方程[tex=5.0x1.357]4FAEVKXeWpq+BWzNaaSr2pIRnZB59tDTVNaVxvfck6A=[/tex]在区间 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内有唯一连续的解.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内连续,[tex=5.929x1.5]sbopwFh15DGdZNjI1iYy4G6kSElxDmO0lvvMWmfORGBEOuGXy29kO5fEkYxoidfH[/tex]存在,证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界。
内容
- 0
[1987 年 2 ] 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导且[tex=4.071x1.429]yApvS3TPe/+BmYN+KyWzUf9VKa3ZPsUmBjAtOkZd230=[/tex],则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内单调增加。
- 1
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续 [tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex], 且 [tex=7.214x1.286]gTP6d0OGvBAr/Cdd9DfHwOQN+yrtS4NwZEA/h3+j3U6MdPCavYSav1SP8PlKYpHK[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 至少存在一个零点.
- 2
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导,且 [tex=4.286x1.429]856Pl9HNlDstK+TaTvDo/WImfr1CIEtqlsaEuEzPweQ=[/tex] 证明: [tex=4.857x1.357]AI7qFlwvAie2od8R8L5lQEHXATaPFQeeAoHx2D0Kcno=[/tex]
- 3
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=3.929x1.286]0VLGTLK6v3MkNP58z7HiHRiYa+tAByiT7/p78X428Zo=[/tex]又设[tex=3.714x1.357]ZrYYIDqiFBMbvUsK36RHVw==[/tex],[tex=3.5x1.357]+SeBOzX4aVjbR47kp1NWjA==[/tex],证明:方程[tex=3.214x1.357]a0KviXBQihxXd5dfeZpD+w==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有且仅有一个根.
- 4
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内连续,且[tex=2.714x1.5]sbopwFh15DGdZNjI1iYy4BCIF+of2Gf+KVIvIOMzH1E=[/tex],[tex=2.643x1.5]IHSXusjiWmyZ2OSczOJSFbS9huIbEWUqkRG2jpVkEYc=[/tex]存在,证明函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界.