设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元的交换环, [tex=2.286x1.071]BX5Hq24pv20xx1ImfWhlnQ==[/tex]证明: [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是单位当且仅当 [tex=3.143x1.357]UMu6yZaqu6lAbCVsfR7R0AeXbqkMKrtmkRynShNa3mw=[/tex]
举一反三
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元 [tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex] 的环, [tex=2.286x1.071]BX5Hq24pv20xx1ImfWhlnQ==[/tex] 证明: 如果存在唯一的 [tex=2.143x1.214]0G40S7xy/AyjVZa9odMngw==[/tex] 使 [tex=3.071x1.214]7QjMUvcbaXnFztR0qOs4Dg==[/tex]则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个环, [tex=2.286x1.071]BX5Hq24pv20xx1ImfWhlnQ==[/tex] 如果存在 [tex=2.5x1.214]MUBOqhgSidNbIiPGutca8TrElVNegsU2eDrOYBfzzXU=[/tex] 使 [tex=2.571x1.214]vISNIN/rFHRC9rdtmDdjoQ==[/tex] 则称 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个幂零元(nilpotent element).(1) 试求 [tex=1.429x1.214]jBC5UhniB1q3BXBWtSyFOc2/wXu1a7+esOF5m9BzKww=[/tex] 的所有幂零元;(2) 证明: 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元[tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex] 的交换环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个幕零元, 则 [tex=1.857x1.071]TckY1UXsKGQ9dh30ORCSzg==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个可逆元;(3) 证明: 交换环的幂零元全体构成一个子环.
- 证明定理:设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个有单位元的环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的一个未定元.(1) [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的零元 0 就是[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]的零元 (即零多项式);(2) [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 是有单位元的环,且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的单位元就是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位元;(3) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是无零因子环, 则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是无零因子环, 且 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的单位就是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的单位;(4) 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环,则 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是交换环;
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是有单位元环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 中的一个可逆元,证明[tex=1.357x1.071]8yCwfz9DDtEtAlvOBd+Hzg==[/tex] 也是可逆元, 且 [tex=6.071x1.5]oiuwd+L46nf4K9wnrs8yJpYIcX6RhmujF1kSw3uHa1c=[/tex]。
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个有单位元 [tex=3.143x1.357]BwybrwuFYErsCAQCXkFyKQ==[/tex] 的环, 对于 [tex=2.286x1.214]SCTN5cCAZwQwtexbANDc8g==[/tex] 如果存在 [tex=2.143x1.214]MZTFub2B+s3YbGewIdydwQ==[/tex] 使得 [tex=4.286x1.214]NV1D0gBzpe77ylNh7rrBPA==[/tex] 则称 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为可逆元( 或称 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为单位, 注意不要与单位元 [tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex] 混淆 ), 称 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的逆, 记作 [tex=1.786x1.214]fANTqBtpXRtjjxA/FVe/Qg==[/tex] 证明 : [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中一个元素 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是可逆元当且仅当 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是零次多项式.