• 2022-06-03
    设[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]为赋范线性空间[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]中的有界线性算子,试证明[tex=6.857x2.286]WhNvqi8F1VIMeKnLp0fNIoZcM/FnBcVdKu7qhG+qbdw=[/tex]
  • 举一反三

    内容

    • 0

      设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.

    • 1

      设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]为赋范线性空间,试证明(1)序列弱完备的赋范线性空间必是巴拿赫空间

    • 2

      设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。

    • 3

      设[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]为希尔伯特空间,[tex=5.357x1.357]If06r+kP9vuOFsrER2O4jcGPsWfaAwOZsAgnlzsCAZg=[/tex]为[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]的希尔伯特共轭算子,证明[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]为紧算子的充分必要条件是[tex=1.714x1.071]DboUdCJehr/B2VurdmfBFQ==[/tex]为紧算子。

    • 4

      设函数f具有一阶连续导数,f''(0)存在,且f'(0)=0,f(0)=0,[tex=11.143x2.929]FgiJWgRQAKO6KUAKNMtpr42BveQYl/ToVviQ5cCtM9wcSY0QBIbGsihuelZ2Y0bAzYEbycD2Q2vfi4GC2Ijs1kB6/BRoIojNsaonEeVPYMMzs1ywITo1iMnLUJQZym3e[/tex].(1)确定a,使得g(x)处处连续;(2)对以上所确定的a,证明g(x)具有一阶连续导数.