设[tex=1.714x1.214]9ikpIeQlx6jFxVpULl5CQQ==[/tex]是赋范线性空间,[tex=3.286x1.0]AgvT20i3WTv9ApZQh3jIgB1L6P+XUcE0vpU6V3rhj2A=[/tex]为闭线性算子, 试证明(1)设[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]中的紧集,则像[tex=1.357x1.0]hVMRB0EuEKoyAlFH69fTgA==[/tex]是[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]中的闭集
举一反三
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.
- 设 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是赋范数性空间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]到赋范线性空间 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的线性算子,若 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 的零空间是闭集, [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是否一定 有界?
- 设[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]为赋范线性空间[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]中的有界线性算子,试证明[tex=6.857x2.286]WhNvqi8F1VIMeKnLp0fNIoZcM/FnBcVdKu7qhG+qbdw=[/tex]
- 设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是赋范线性空间[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]上的线性泛函, 则[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]连续的充要条件是:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的零空间[tex=2.071x1.357]ACaVOH6l1K4ykFJiDz3UOA==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的闭子空间
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)